Browse > Article

Health Metrics and Information Behavior: How Users Estimate and Use Self-Quantifying Activity and Health Information  

Ilhan, Aylin (Department of Information Science, Heinrich Heine University)
Publication Information
Journal of Information Science Theory and Practice / v.8, no.3, 2020 , pp. 47-63 More about this Journal
This study focuses on users of activity tracking technologies and their related information behavior. How useful is the provided information by the trackers? Do users understand all information and explanations? We conducted a web-based survey. All in all, 631 users of a tracking device filled out the survey. From the perspective of information science, this investigation aims to analyze information needs considering different types of the provided information by activity tracking technologies. Are users satisfied by using the information on their steps, heart rates, and sleep duration? How do users assess readability about heart rate zones and sleep stages? Additionally, we investigated if users understand how to reflect on and adapt their health behavior based on the received explanations. According to the results, users mainly agree that the received information (raw data as well as - to a lesser extent - aggregated data in the form of corresponding diagrams) is useful, that the explanations are easy to understand, and that they know how to use this obtained information. This investigation enables an in-depth insight into how users are applying the self-quantifying activity and health information and which information needs are satisfied.
information behavior; health-related metrics; human-computer interaction; activity tracking technologies; Fitbit;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Laerd Statistics. (2018). Mann-Whitney U Test using SPSS statistics. Retrieved August 28, 2020 from
2 Li, I., Dey, A., & Forlizzi, J. (2010, April 10-15). A stage-based model of personal informatics system. In E. Mynatt, G. Fitzpatrick, S. Hudson, K. Edwards, & T. Rodden (Eds.), Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 557-566). ACM.
3 Liang, Z., Ploderer, B., & Chapa-Martell, M. A. (2017, May 23-26). Is fitbit fit for sleep-tracking?: Sources of measurement errors and proposed countermeasures. In N. Oliver, M. Czerwinski, & A. Matic (Eds.), Proceedings of the 11th EAI International Conference on Pervasive Computing Technologies for Healthcare (pp. 476-479). ACM.
4 Line, M. B. (1974). Draft definitions: Information and library needs, wants, demands and uses. Aslib Proceedings, 26(2), 87.   DOI
5 Liu, S. (2019). Fitbit - Statistics & facts. Retrieved August 28, 2020 from
6 Lupton, D. (2014, December 2-5). Self-tracking cultures: Towards a sociology of personal informatics. In T. Leong (Ed.), Proceedings of the 26th Australian Computer-Human Interaction Conference on Designing Futures: the Future of Design (pp. 77-86). ACM.
7 Lupton, D. (2016). The quantified self. Polity Press.
8 Lyall, B., & Robards, B. (2018). Tool, toy and tutor: Subjective experiences of digital self-tracking. Journal of Sociology, 54(1), 108-124.   DOI
9 Maher, C., Ryan, J., Ambrosi, C., & Edney, S. (2017). Users' experiences of wearable activity trackers: A cross-sectional study. BMC Public Health, 17(1), 880.   DOI
10 Martin, S. S., Feldman, D. I., Blumenthal, R. S., Jones, S. R., Post, W. S., McKibben, R. A., … Blaha, M. J. (2015). mActive: A randomized clinical trial of an automated mHealth intervention for physical activity promotion. Journal of the American Heart Association, 4(11), 1-9.
11 McKinney, P., Cox, A. M., & Sbaffi, L. (2019). Information literacy in food and activity tracking among parkrunners, people with type 2 diabetes, and people with irritable bowel syndrome: Exploratory study. Journal of Medical Internet Research, 21(8).   DOI
12 Medical Library Association. (2005). Communicating health information literacy [Special report PDF]. Chicago, IL.
13 Nelson, E. C., Verhagen, T., & Noordzij, M. L. (2016). Health empowerment through activity trackers: An empirical smart wristband study. Computers in Human Behavior, 62, 364-374.   DOI
14 Patel, M., & O'Kane, A. A. (2015, April 18-23). Contextual influences on the use and non-use of digital technology while exercising at the gym. In B. Begole, J. Kim, K. Inkpen, & W. Woo (Eds.), Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (pp. 2923-2932). ACM.
15 Pingo, Z., & Narayan, B. (2019). "My smartwatch told me to see a sleep doctor": A study of activity tracker use. Online Information Review, 44(2), 503-519.   DOI
16 Rooksby, J., Rost, M., Morrison, A., & Chalmers, M. (2014, April 26-May 1). Personal tracking as lived informatics. In M. Jones, P. Palnque, A. Schmidt, & T. Grossman (Eds.), Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1163-1172). ACM.
17 Rosenberger, M. E., Buman, M. P., Haskell, W. L., McConnell, M. V., & Carstensen, L. L. (2016). Twenty-four hours of sleep, sedentary behavior, and physical activity with nine wearable devices. Medicine & Science in Sports & Exercise, 48(3), 457-465.   DOI
18 Shin, G., Jarrahi, M. H., Fei, Y., Karami, A., Gafinowitz, N., Byun, A., & Lu, X. (2019). Wearable activity trackers, accuracy, adoption, acceptance and health impact: A systematic literature review. Journal of Biomedical Informatics, 93, 103153.   DOI
19 Scheibe, K., Fietkiewicz, K. J., & Stock, W. G. (2016). Information behavior on social live streaming services. Journal of Information Science Theory and Practice, 4(2), 6-20.   DOI
20 Shih, P. C., Han, K., Poole, E. S., Rosson, M. B., & Carroll, J. M. (2015). Use and adoption challenges of wearable activity trackers. IConference Proceedings, (1), 1-12.
21 Stock, W. G., & Stock, M. (2013). Handbook of information science. Monachium: De Gruyter Saur.
22 Wilson, T. D. (1999). Models in information behaviour research. Journal of Documentation, 55(3), 249-270.   DOI
23 Wilson, T. D. (2000). Human information behavior. Informing Science, 3(2), 49-56.   DOI
24 Zhang S., Schaub F., Feng Y., & Sadeh N. (2019). "It only tells me how i slept, not how to fix it": Exploring sleep behaviors and opportunities for sleep technology. In N. Taylor, C. Christian-Lamb, & M. Martin, B. Nardi (Eds.), Information in contemporary society (pp. 754-766). Cham: Springer.
25 Diaz, K. M., Krupka, D. J., Chang, M. J., Peacock, J., Ma, Y., Goldsmith, J., … Davidson, K. W. (2015). $Fitbit^{(R)}$ : An accurate and reliable device for wireless physical activity tracking. International Journal of Cardiology, 185, 138-140.   DOI
26 Agarwal, N. K. (2015). Towards a definition of serendipity in information behaviour. Information Research, 20(3), paper 675.
27 Agarwal, N. K. (2018). Exploring context in information behavior: Seeker, situation, surroundings, and shared identities. In G. Marchionini (Ed.), Synthesis lectures on information concepts, retrieval, and services (pp. 1-163). Morgan & Claypool.
28 Buckland, M. K. (1991). Information as thing. Journal of the American Society of Information Science, 42(5), 351-360.   DOI
29 Case, D. O., & Given, L. M. (2016). Looking for information: A survey of research on information seeking, needs, and behavior (4th ed.). Bingley: Emerald.
30 Connaway, L. S., & Radford, M. L. (2016). Research methods in library and information science. Santa Barbara: Libraries Unlimited.
31 Eriksson-Backa, K., Ek, S., Niemela, R., & Huotari, M. L. (2012). Health information literacy in everyday life: A study of Finns aged 65-79 years. Health Informatics Journal, 18(2), 83-94.   DOI
32 Evenson, K. R., Goto, M. M., & Furberg, R. D. (2015). Systematic review of the validity and reliability of consumer-wearable activity trackers. International Journal of Behavioral Nutrition and Physical Activity, 12(1), 159.   DOI
33 Feng, Y., & Agosto, D. E. (2017, March 22-25). A survey on management of personal health information from activity trackers. IConference 2017 Proceedings (pp. 370-377). iSchools.
34 Feng, Y., & Agosto, D. E. (2019a). From health to performance: Amateur runners' personal health information management with activity tracking technology. Aslib Journal of Information Management, 71(2), 217-240.   DOI
35 Fritz, T., Huang, E. M., Murphy, G. C., & Zimmermann, T. (2014, April 26-May 1). Persuasive technology in the real world: A study of long-term use of activity sensing devices for fitness. In M. Jones, P. Palnque, A. Schmidt, & T. Grossman (Eds.), Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 487-496). ACM.
36 Feng, Y., & Agosto, D. E. (2019b). Revisiting personal information management through information practices with activity tracking technology. Journal of the Association for Information Science and Technology, 70(12), 1352-1367.   DOI
37 Feng, Y., Li, K., & Agosto, D. E. (2017). Healthy users' personal health information management from activity trackers: The perspective of gym-goers. Proceedings of the Association for Information Science and Technology, 54(1), 71-81.   DOI
38 Fietkiewicz, K. J., Lins, E., Baran, K. S., & Stock, W. G. (2016, January 5-8). Inter-generational comparison of social media use: Investigating the online behavior of different generational cohorts. Proceedings of the 49th Annual Hawaii International Conference on System Sciences (HICSS) (pp. 3829-3838). IEEE.
39 Friedlander, M. B. (2017a). And action! live in front of the camera: An evaluation of the social live streaming service YouNow. International International Journal of Information Communication Technologies and Human Development (IJICTHD), 9(1), 15-33.
40 Friedlander, M. B. (2017b). Streamer motives and usergenerated content on social live-streaming services. Journal of Information Science Theory and Practice, 5(1), 65-84.   DOI
41 Gouveia, R., Karapanos, E., & Hassenzahl, M. (2015, September 9-11). How do we engage with activity trackers? A longitudinal study of Habito. In K. Mase, M. Langheinrich, D. Gatica-Perez, H. Gellersen, T. Choudhury, & K. Yatani (Eds.), Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 1305-1316). ACM.
42 Jones, W. (2007). Personal information management. Annual Review of Information Science and Technology, 41(1), 453-504.   DOI
43 Gowin, M., Wilkerson, A., Maness, S., Larson, D. J., Crowson, H. M., Smith, M., & Cheney, M. K. (2019). Wearable activity tracker use in young adults through the lens of social cognitive theory. American Journal of Health Education, 50(1), 40-51.   DOI
44 Harrison, D., Marshall, P., Bianchi-Berthouze, N., & Bird, J. (2015, September 9-11). Activity tracking: Barriers, workarounds and customisation. Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 617-621). ACM.
45 Hirvonen, N., Huotari, M.-L., Niemela, R., & Korpelainen, R. (2012). Information behavior in stages of exercise behavior change. Journal of the American Society for Information Science and Technology, 63(9), 1804-1819.   DOI
46 Hirvonen, N., Pyky, R., Korpelainen, R., & Huotari, M.-L. (2015). Health information literacy and stage of change in relation to physical activity information seeking and avoidance: A population-based study among young men. Proceedings of the Association for Information Science and Technology, 52(1), 1-11.
47 Ilhan, A., & Henkel, M. (2018, January 3-6). 10,000 steps a day for health? User-based evaluation of wearable activity trackers. Proceedings of the 51st Hawaii International Conference on System Sciences (pp. 3376-3385). HICSS (ScholarSpace).
48 Jones, W. (2012). The future of personal information management, part I: Our information, always and forever. Synthesis Lectures on Information Concepts, Retrieval, and Services, 4(1), 1-125.   DOI
49 Kinney, D. A., Nabors, L. A., Merianos, A. L., & Vidourek, R. A. (2019). College students' use and perceptions of wearable fitness trackers. American Journal of Health Education, 50(5), 298-307.   DOI