Browse > Article
http://dx.doi.org/10.1039/b9pp00026g

Triple proton transfer of excited 7-hydroxyquinoline along a hydrogen-bonded water chain in ethers: secondary solvent effect on the reaction rate  

Park, Sun-Young (School of Chemistry, Seoul National University)
Kim, Bo-Ra (School of Chemistry, Seoul National University)
Lee, Young-Shin (School of Chemistry, Seoul National University)
Kwon, Oh-Hoon (School of Chemistry, Seoul National University)
Jang, Du-Jeon (School of Chemistry, Seoul National University)
Publication Information
Photochemical & Photobiological Sciences / v.8, no.11, 2009 , pp. 1611-1617 More about this Journal
Abstract
A large secondary solvent effect on the reaction rate has been experimentally observed in the excited-state tautomerization of a 7-hydroxyquinoline (7HQ) molecule complexed cyclically with two water molecules in ethers. The proton acceptance of a water molecule from the enolic group of 7HQ is the rate-determining step while the proton donation of a water molecule to the imino group of 7HQ is followed rapidly to complete the triple proton transfer of the $7HQ{\cdot}(H_2O)_2$ complex in both diethyl ether and di-n-propyl ether. The rate constant of the tautomerization is larger in diethyl ether than in di-n-propyl ether due to the more polar environment around the complex in diethyl ether. Although the activation energies of the proton transfer are similar in both ethers, the kinetic isotope effect of the rate constant is larger in di-n-propyl ether than in diethyl ether. We attribute these kinetic differences to dissimilarity in the polarities of the two secondary solvents.
Keywords
Citations & Related Records

Times Cited By Web Of Science : 9  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 M. Gil and J. Waluk, Vibrational gating of double hydrogen tunneling in porphycene, J. Am. Chem. Soc., 2007, 129, 1335-1341.   DOI
2 A. Bach, S. Coussan, A. Muller and S. Leutwyler, Water-chain clusters: Vibronic spectra of $7-hydroxyquinoline{\cdot}(H_2O)_2$, J. Chem. Phys., 2000, 112, 1192-1203.   DOI
3 J. Barsan, M. J. Sutcliffe and N. S. Scrutton, Enzymatic H-transfer requires vibration-driven extreme tunneling, Biochemistry, 1999, 38, 3218-3222.   DOI
4 O. F. Mohammed,O.-H.Kwon, C. M. Othon andA.H. Zewail, Charge transfer assisted by collective hydrogen-bonding dynamics, Angew. Chem., Int. Ed., 2009, 48, 6251-6256.   DOI
5 M. J. Kamlet, J.-L. M. Abboud, M. H. Abraham and R. W. Taft, Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, J. Org. Chem., 1983, 48, 2877-2887.   DOI
6 R. A. Marcus and N. Sutin, Electron transfers in chemistry and biology, Biochim. Biophys. Acta, Rev. Bioenerg., 1985, 811, 265-322.   DOI
7 H. J. Park, O.-H. Kwon, C. S. Ah and D.-J. Jang, Excited-state tautomerization dynamics of 7-hydroxyquinoline in b-cyclodextrin, J. Phys. Chem. B, 2005, 109, 3938-3943.   DOI
8 M. Born, Volumen und hydratationswarme der ionen, Z. Phys., 1920, 1, 45-48.   DOI
9 P. M. Kiefer and J. T. Hynes, Kinetic isotope effects for nonadiabatic proton transfer reactions in a polar environment. 1. Interpretation of tunneling kinetic isotopic effect, J. Phys. Chem. A, 2004, 108, 11793-11808.   DOI
10 R. L. Schowen, Harmony and dissonance in the concert of proton motions, Angew. Chem., Int. Ed. Engl., 1997, 36, 1434-1438.   DOI
11 D. Gerritzen and H.-H. Limbach, Kinetic isotope effects and tunneling in cyclic double and triple proton transfer between acetic acid and methanol in tetrahydrofuran studied by dynamic $^1H$ and $^2H$ NMR spectroscopy, J. Am. Chem. Soc., 1984, 106, 869-879.   DOI
12 P. M. Tolstoy, P. Schah-Mohammedi, S. N. Smirnov, N. S. Golubev, G. S. Denisov and H.-H. Limbach, Characterization of fluxional hydrogen-bonded complexes of acetic acid and acetate by NMR: Geometries and isotope and solvent effects, J. Am. Chem. Soc., 2004, 126, 5621-5634.   DOI
13 J. M. Lopez, F.Mannle, I. Wawer, G. Buntkowsky and H.-H. Limbach, NMR studies of double proton transfer in hydrogen bonded cyclic N,N'-diarylformamidine dimmers: Conformational control, kinetic HH/HD/DD isotope effects and tunneling, Phys. Chem. Chem. Phys., 2007, 9, 4498-4513.   DOI
14 O.-H. Kwon and A. H. Zewail, Double proton transfer dynamics of model DNA base pairs in the condensed phase, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 8703-8708.   DOI
15 Y. Matsumoto, T. Ebata and N. Mikami, OH stretching vibrations and hydrogen-bonded structures of $7-hydroxyquinoline-(H_2O)_{1-3}$ investigated by IR-UV double-resonance spectroscopy, Chem. Phys. Lett., 2001, 338, 52-60.   DOI
16 W.-H. Fang, Theoretical characterization of the structures and reactivity of $7-hydroxyquinoline-(H_2O)_n$ (n=1-3) complexes, J. Phys. Chem. A, 1999, 103, 5567-5573.   DOI
17 Y Tanimoto and M. Itoh, Excited-state interation of maminoacetophenone with t-amyl alcohol, Chem. Phys. Lett., 1978, 57, 179-182.   DOI
18 G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, Oxford, 1st edn., 1997, pp. 11-32.
19 O.-H. Kwon, Y.-S. Lee, H. J. Park, Y. Kim and D.-J. Jang, Asymmetric double proton transfer of excited 1 : 1 7-azaindole/alcohol complexes with anomalously large and temperature-independent kinetic isotope effects, Angew. Chem., Int. Ed., 2004, 43, 5792-5796.   DOI
20 O. Klein, F. Aguilar-Parrilla, J. M. Lopez, N. Jagerovic, J. Elguero and H.-H. Limbach, Dynamic NMR study of the mechanisms of double, triple, and quadruple proton and deuteron transfer in cyclic hydrogen bonded solids of pyrazole derivatives, J. Am. Chem. Soc., 2004, 126, 11718-11732.   DOI
21 S. Kohtani, A. Tagami and R. Nakagaki, Excited-state proton transfer of 7-hydroxyquinoline in a non-polar medium: Mechanism of triple proton transfer in the hydrogen-bonded system, Chem. Phys. Lett., 2000, 316, 88-93.   DOI
22 S. Toba, G. Colombo and K. M. Merz, Jr., Solvent dynamics and mechanism of proton transfer in human carbonic anhydrase II, J. Am. Chem. Soc., 1999, 121, 2290-2302.   DOI
23 J. Konijnenberg, G. B. Ekelmans, A. H. Huizer and C. A. G. O. Varma, Mechanism and solvent dependence of the solvent-catalysed pseudo-intramolecular proton transfer of 7-hydroxyquinoline in the first electronically excited singlet state and in the ground state of its tautomer, J. Chem. Soc., Faraday Trans. 2, 1989, 85, 39-51.   DOI
24 S.-I. Lee and D.-J. Jang, Proton transfers of aqueous 7-hydroxyquinoline in the first excited singlet, lowest triplet, and ground states, J. Phys. Chem., 1995, 99, 7537-7541.   DOI
25 R. B. Gennis, Cytochrome c oxidase: One enzyme, two mechanisms?, Science, 1998, 280, 1712-1713.   DOI
26 P.-T. Chou, C.-Y. Wei, C.-R. C. Wang, F.-T. Hung and C.-P. Chang, Proton-transfer tautomerism of 7-hydroxyquinolines mediated by hydrogen-bonded complexes, J. Phys. Chem. A, 1999, 103, 1939-1949.   DOI
27 E. Hatcher, A. V. Soudackov and S. Hammes-Schiffer, Proton-coupled electron transfer in soybean lipoxygenase, J. Am.Chem. Soc., 2004, 126, 5763-5775.   DOI
28 H. Luecke, H.-T. Richter and J. K. Lanyi, Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution, Science, 1998, 280, 1934-1937.   DOI
29 U. Liebl, G. Lipowski, M. Ngererie, J.-C. Lambry, J.-L. Martin and M. H. Vos, Coherent reaction dynamics in a bacterial cytochrome c oxidase, Nature, 1999, 401, 181-184.   DOI
30 J. Tantori, P. Sebban, H. Michel and L. Baciou, In Rhodobacter sphaeroides reaction centers, mutation of proline L209 to aromatic residues in the vicinity of a water channel alters the dynamic coupling between electron and proton transfer processes, Biochemistry, 1999, 38, 13179-13187.   DOI
31 M. Eigen, Proton transfer, acid-base catalysis and enzymatic hydrolysis, Angew. Chem., Int. Ed. Engl., 1964, 3, 1-19.   DOI
32 D. Lu and G. A. Voth, Proton transfer in the enzyme carbonic anhydrase: An ab initio study, J. Am. Chem. Soc., 1998, 120, 4006-4014.   DOI
33 J. D. Bernal and R. H. Fowler, A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions, J. Chem. Phys., 1933, 1, 515-548.   DOI
34 M. L. Huggins, Hydrogen bridges in ice and liquid water, J. Phys. Chem., 1936, 40, 723-731.
35 G. Zundel and H.Metzger, Energiebander der tunnelnden uberschuB-protenon in flussigen sauren. Eine IR-spektroskopische untersuchung der natur der gruppierungen $H_5O_2^+$, Z. Phys. Chem., Neue Folge, 1968, 58, 225-245.   DOI
36 D. Marx, Proton transfer 200 years after von Grotthuss: Insights from ab initio simulations, ChemPhysChem, 2006, 7, 1848-1870.   DOI
37 S.-Y. Park, Y.-S. Lee, O.-H. Kwon and D.-J. Jang, Proton transport of water in acid-base reactions of 7-hydroxyquinoline, Chem. Commun., 2009, 926-928.
38 A.Kohen, R. Cannio, S. Bartolucci and J. P.Klinman, Enzyme dynamics and hydrogen tunneling in a thermophilic alcohol dehydrogenase, Nature, 1999, 399, 496-499.   DOI
39 C. J. T. de Grotthuss, Sur la decomposition de l'eau et des corps quelletient en dissolution al'aide de l'electricite galvanique, Ann. Chim., 1806, 58, 54-74
40 O. F. Mohammed, D. Pines, E. T. J. Nibbering and E. Pines, Baseinduced solvent switches in acid-base reactions, Angew. Chem., Int. Ed., 2007, 46, 1458-1461   DOI
41 O. F. Mohammed, D. Pines, E. Pines and E. T. G. Nibbering, Aqueous bimolecular proton transfer in acid-base neutralization, Chem. Phys., 2007, 341, 240-257.   DOI
42 C. Tanner, C. Manca and S. Leutwyler, Probing the threshold to H atom transfer along a hydrogen-bonded ammonia wire, Science, 2003, 302, 1736-1739.   DOI
43 E. Huckel, Theorie der beweglichkeiten des wasserstoff- und hydroxylions in wassriger losung, Z. Elektrochem. Angew. Phys. Chem., 1928, 34, 546-562.
44 A. E. Stearn and J. Eyring, The deduction of reaction mechanisms from the theory of absolute rates, J. Chem. Phys., 1937, 5, 113-124.   DOI
45 Y.-S. Lee, H. Yu, O.-H. Kwon and D.-J. Jang, Photo-induced protontransfer cycle of 2-naphthol in faujasite zeolitic nanocavities, Phys. Chem. Chem. Phys., 2008, 10, 153-158.   DOI
46 N. Agmon, The Grotthuss mechanism, Chem. Phys. Lett., 1995, 244, 456-462.   DOI
47 G. A. Voth, Computer simulation of proton solvation and transport in aqueous and biomolecular systems, Acc. Chem.Res., 2006, 39, 143-150.   DOI
48 S. Yan, L. Zhang, R. I. Cukier and Y. Bu, Exploration on regulating factors for proton transfer along hydrogen-bonded water chains, ChemPhysChem, 2007, 8, 944-954.   DOI
49 H. Lapid, N. Agmon, M. K. Petersen and G. A. Voth, A bond-order analysis of the mechanism for hydrated protonmobility in liquid water, J. Chem. Phys., 2005, 122, 014506.   DOI
50 L. Sun, R. I. Cukier and Y. Bu, Factors determining the deriving force of DNA formation: Geometrical differences of base pairs, dehydration of bases, and the arginine assisting, J. Phys. Chem. B, 2007, 111, 1802-1808.   DOI
51 D. Marx, M. E. Tuckerman, J. Hutter and M. Parrinello, The nature of the hydrated excess proton in water, Nature, 1999, 397, 601-604.   DOI
52 P. L. Geissler, C. Dellago, D. Chandler, J. Hutter and M. Parrinello, Autoionization in liquid water, Science, 2001, 291, 2121-2124.   DOI
53 M. E. Tuckerman, D. Marx and M. Parrinello, The nature and transport mechanism of hydrated hydroxide ions in aqueous solution, Nature, 2002, 417, 925-929.   DOI
54 O. F. Mohammed, D. Pines, J. Dreyer, E. Pines and E. T. J. Nibbering, Sequential proton transfer throughwater bridges in acid-base reactions, Science, 2005, 310, 83-86.   DOI
55 O.-H. Kwon, T. G. Kim, Y.-S. Lee and D.-J. Jang, Biphasic tautomerization dynamics of excited 7-hydroxyquinoline in reverse micelles, J. Phys. Chem. B, 2006, 110, 11997-12004.   DOI
56 O.-H. Kwon, Y.-S. Lee, B. K. Yoo and D.-J. Jang, Excited-state triple proton transfer of 7-hydroxyquinoline along a hydrogen-bonded alcohol chain: Vibrationally assisted proton tunnelling, Angew. Chem., Int. Ed., 2006, 45, 415-419.   DOI
57 S.-Y. Park, Y.-S. Lee and D.-J. Jang, Excited-state proton-transfer dynamics of 1-methyl-6-hydroxyquinolinium embedded in a solid matrix of poly(2-hydroxyethyl methacrylate), Phys. Chem. Chem. Phys., 2008, 10, 6703-6707.   DOI