Browse > Article

Bacterial Diversity at Different Depths in Lead-Zinc Mine Tailings as Revealed by 16S rRNA Gene Libraries  

Zhang, Han-Bo (Key Laboratory of Conservation and Utilization for Bio-resources, Yunnan University)
Shi, Wen (Department of Biology, Yunnan University)
Yang, Ming-Xia (Department of Biology, Yunnan University)
Sha, Tao (Key Laboratory of Conservation and Utilization for Bio-resources, Yunnan University)
Zhao, Zhi-Wei (Key Laboratory of Conservation and Utilization for Bio-resources, Yunnan University)
Publication Information
Journal of Microbiology / v.45, no.6, 2007 , pp. 479-484 More about this Journal
Abstract
Bacterial communities at 10 cm, 100 cm, and 200 cm depths in a 100-year-old lead-zinc tailing heap were evaluated by constructing 16S rRNA gene libraries. In total, 98 operational taxonomic units (OTUs) were identified from 193 clones at a 3% sequence difference level. The OTU number and species richness decreased with the depth. Species composition was significantly different between the three libraries. Fifty-seven percent of the examined clones were Acidobacteria and 27% belonged to Proteobacteria. Other sequences included Chloroflexi, Firmicutes, Chlamydiae, Actinobacteria, Gemmatimonadetes, Nitrospira, and three unclassified OTUs. Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and Actinobacteria were mainly distributed in the rhizosphere of naturally colonizing plants; however, Deltaproteobacteria, Acidobacteria, and Chloroflexi tended to inhabit the deeper tailings (below the 100 cm-depth).
Keywords
lead-zinc mine tailings; depth; bacterial diversity; 16S rRNA gene library;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 Dudka, S. and D.C. Adriano. 1997. Environmental impacts of metal ore mining and processing: A review. J. Environ. Qual. 26, 590-602   DOI   ScienceOn
2 Filion, M., R.C. Hamelin, L. Bernier, and M. St-Arnaud. 2004. Molecular profiling of rhizosphere microbial communities associated with healthy and diseased black spruce (Picea mariana) seedlings grown in a nursery. Appl. Environ. Microbiol. 70, 3541-3551   DOI   ScienceOn
3 Lasat, M.M. 2002. Phytoextraction of toxic metals: A review of biological mechanisms. J. Environ. Qual. 31, 109-120   DOI   PUBMED   ScienceOn
4 North, N.N., S.L. Dollhopf, L. Petrie, J.D. Istok, D.L. Balkwill, and J.E. Kostka. 2004. Change in bacterial community structure during in situ biostimulation of subsurface sediment cocontaminated with uranium and nitrate. Appl. Environ. Mcirobiol. 70, 4911-4920   DOI   ScienceOn
5 Nubel, U., B. Engelen, A. Felske, J. Snaidr, A. Wieshuber, R.I. Amann, W. Ludwig, and H. Backhaus. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 178, 5636-5643   DOI   PUBMED
6 Yamada, T., Y. Sekiguchi, H. Imachi, Y. Kamagata, A. Ohashi, and H. Harada. 2005. Diversity, localization, and physiological properties of filamentous microbes belonging to Chloroflexi subphylum I in mesophilic and thermophilic methanogenic sludge granules. Appl. Environ. Microbiol. 71, 7493-7503   DOI   ScienceOn
7 Kelly, J.J. and R.L. Tate III. 1998. Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter. J. Environ. Qual. 27, 609-617   DOI   ScienceOn
8 Schloss, P.D., B.R. Larget, and J. Handelsman. 2004. Integration of microbial ecology and statistics: a test to compare gene libraries. Appl. Environ. Microbiol. 70, 5485-5492   DOI   ScienceOn
9 Gillan, D.C., B. Danis, P. Pernet, G. Joly, and P. Dubois. 2005. Structure of sediment-associated microbial communities along a heavy-metal contamination gradient in the marine environment. Appl. Environ. Microbiol. 71, 679-690   DOI   ScienceOn
10 Schloss, P.D. and J. Handelsman. 2005. Introducing DOTUR, a computer grogram for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 71, 1501-1506   DOI   ScienceOn
11 Southham, G. and T.J. Beveridge. 1992. Enumeration of thiobacilli within pH-neutral and acidic mine tailings and their role in the development of secondary mineral soil. Appl. Environ. Microbiol. 58, 1904-1912   PUBMED
12 Kamnev, A.A. and D. Van Der Lelie. 2000. Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Biosci. Rep. 20, 239-258   DOI   ScienceOn
13 Zhang, H., C. Duan, B. Hu, H. Luo, T. Sha, and L. Cheng. 2003. Dynamic of heavy metals in a lead-zinc tailings deposited in different years. J. Agro-Environ. Sci. (in Chinese) 22, 67-69
14 Jacob, D.L. and M.L. Otte. 2004. Influence of Typha latifolia and fertilization on metal mobility in two different Pb-Zn mine tailings types. Sci. Total Environ. 333, 9-24   DOI   ScienceOn
15 Ellis, R.J., P. Morgan, A.J. Weightman, and J.C. Fry. 2003. Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl. Environ. Microbiol. 69, 3223-3230   DOI
16 Gadd, G.M. 2000. Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr. Opin. Biotech. 11, 271-279   DOI   ScienceOn
17 Roane, T.M. and S.T. Kellogg. 1996. Characterization of bacterial communities in heavy metal contaminated soils. Can. J. Microbiol. 42, 593-603   DOI   PUBMED   ScienceOn
18 Nemergut, D.R., A.P. Martin, and S.K. Schmidt. 2004. Integron diversity in heavy-metal-contaminated mine tailings and inferences about integron evolution. Appl. Environ. Microbiol. 70, 1160-1168   DOI
19 Schippers, A., R. Hallmann, S. Wentzien, and W. Sand. 1995. Microbial diversity in uranium mine waste heaps. Appl. Environ. Microbiol. 61, 2930-2935   PUBMED
20 Benner, S.G., W.D. Gould, and D.W. Blowes. 2000. Microbial populations associated with the generation and treatment of acid mine drainage. Chem. Geol. 169, 435-448   DOI   ScienceOn
21 Whitbread-Abrutat, P.H. 1997. The potential of some soil amendments to improve tree growth on metalliferous mine wastes. Plant Soil 192, 199-217   DOI   ScienceOn
22 Felsensterin, J. 1989. PHYLIP-Phylogeny inference package (version 3.2). Cladistics 5, 164-166
23 Mahmoud, K.K., L.G. Leduc, and G.D. Ferroni. 2005. Detection of Acidithiobacillus ferrooxidans in acid mine drainage environments using fluorescent in situ hybridization (FISH). J. Microbiol. Meth. 61, 33-45   DOI   ScienceOn
24 Feris, K., P. Ramsey, C. Frazar, J.N. Moore, J.E. Gannon, and W.E. Holben. 2003. Differences in hyporheic-zone microbial community structure along a heavy-metal contamination gradient. Appl. Environ. Microbiol. 69, 5563-5573   DOI
25 Geissler, A. and S. Selenska-Pobell. 2005. Addition of U(VI) to a uranium mining waste sample and resulting changes in the indigenous bacterial community. Geobiology 3, 275-285   DOI   ScienceOn
26 Hugenholtz, P., B.M. Goebel, and N.R. Pace. 1998. Impact of culture- independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180, 4765-4774   PUBMED
27 Chang, Y.J., A.D. Peacock, P.E. Long, J.R. Stephen, J.P. McKinley, S.J. Macnaughton, A.K.M.A. Hussain, A.M. Saxton, and D.C. White. 2001. Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site. Appl. Environ. Microbiol. 67, 3149-3160   DOI   ScienceOn
28 Wielinga, B., J.K. Lucy, J.N. Moore, O.F. Seastone, and J.E. Gannon. 1999. Microbiological and geochemical characterization of fluvially deposited sulfidic mine tailings. Appl. Environ. Microbiol. 65, 1548-1555   PUBMED
29 Anderson, R.T., H.A. Vrionis, I. Ortiz-Bernad, C.T. Resch, P.E. Long, R. Dayvault, K. Karp, S. Marutzky, D.R. Metzler, A. Peacock, D.C. White, M. Lowe, and D.R. Lovley. 2003. Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl. Environ. Microbiol. 69, 5884-5891   DOI