Browse > Article

Phosphate and Carbon Source Regulation of Alkaline Phosphatase and Phospholipase in Vibrio vulnificus  

Oh, Wan-Seok (Department of Biology, University of Incheon)
Im, Young-Sun (Department of Biology, University of Incheon)
Yeon, Kyu-Yong (Department of Biology, University of Incheon)
Yoon, Young-Jun (Department of Biology, University of Incheon)
Kim, Jung-Wan (Department of Biology, University of Incheon)
Publication Information
Journal of Microbiology / v.45, no.4, 2007 , pp. 311-317 More about this Journal
Abstract
In this study, the effects of phosphate concentration and carbon source on the patterns of alkaline phosphatase (APase) and phospholipase (PLase) expression in Vibrio vulnificus ATCC 29307 were assessed under various conditions. The activities of these enzymes were repressed by excess phosphate (4 mM) in the culture medium, but this repression was reversed upon the onset of phosphate starvation in low phosphate defined medium (LPDM) containing 0.2 mM of phosphate at approximately the end of the exponential growth phase. The expressions of the two enzymes were also influenced by different carbon sources, including glucose, fructose, maltose, glycerol, and sodium acetate at different levels. The APase activity was derepressed most profoundly in LPDM containing fructose as a sole carbon source. However, the repression/derepression of the enzyme by phosphate was not observed in media containing glycerol or sodium acetate. In LPDM-glycerol or sodium acetate, the growth rate was quite low. The highest levels of PLase activity were detected in LPDM-sodium acetate, followed by LPDM-fructose. PLase was not fully repressed by high phosphate concentrations when sodium acetate was utilized as the sole carbon source. These results showed that multiple regulatory systems, including the phosphate regulon, may perform a function in the expression of both or either APase and PLC, in the broader context of the survival of V. vulnificus.
Keywords
Vibrio vulnificus; alkaline phosphatase; phospholipase; phosphate; carbon source;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 7
연도 인용수 순위
1 Berka, R.M., G.L. Gray, and M.L. Vasil. 1981. Studies of phospholipase C (heat-labile hemolysin) in Pseudomonas aeruginosa. Infect. Immun. 34, 1071-1074   PUBMED
2 Broich, M., K. Rydzewski, T.L. McNealy, R. Marre, and A. Flieger. 2006. The global regulatory proteins LetA and RpoS control phospholipase A, lysophospholipase A, acyltransferase, and other hydrolytic activities of Legionella pneumophila JR32. J. Bacteriol. 188, 1218-1226   DOI   ScienceOn
3 Gulig, P.A., K.L. Bourdage, and A.M. Starks. 2005. Molecular pathogenesis of Vibrio vulnificus. J. Microbiol. 43, 118-131   과학기술학회마을
4 Hulett, F.M. and K. Jensen. 1988. Critical roles of spoOA and spoOH in vegetative alkaline phospahtase production in Bacillus subtilis. J. Bacteriol. 170, 3765-3768   DOI   PUBMED
5 Kirschnek, S. and E. Gulbins. 2006. Phospholipase A2 functions in Pseudomonas aeruginosa-induced apoptosis. Infect. Immun. 74, 850-860   DOI   ScienceOn
6 Kuroshima, T. and K. Hayano. 1982. Phospholipase C activity in soil. Soil Sci. Plant. Nutr. 28, 535-542   DOI
7 Lee, J.K., C.W. Edwards, and F.M. Hulett. 1991. Bacillus licheniformis APase I gene promoter : a strong well-regulated promoter in B. subtilis. J. Gen. Microbiol. 137, 1127-1133   DOI   PUBMED   ScienceOn
8 Puri-Taneja, A., P. Salbi, Y. Chen, and F.M. Hulett. 2006. CcpA Causes repression of the phoBR promoter through a novel transcription start site, $P_{A6}$. J. Bacteriol. 188, 1266-1278   DOI   ScienceOn
9 Trowsdale, J., D. Martin, D. Bicknell, and I. Campbell. 1990. Alkaline phosphatases. Biochem. Soc. Trans. 18, 178-180   DOI   PUBMED
10 Weiss, M.J., K. Ray, P.S. Henthorn, B. Lamb, T. Kadesch, and H. Harris. 1988. Structure of the human liver/bone/kidney alkaline phosphatase gene. J. Biol. Chem. 263, 12002-12010   PUBMED
11 Wanner, B.L. 1993. Gene regulation by phosphate in enteric bacteria. J. Cell. Biochem. 51, 47-54   DOI
12 Sun, G., S.M. Birkey, and F.M. Hulett. 1996. Three two-component signal transduction systems interact for Pho regulation in Bacillus subtilis. Mol. Microbiol. 19, 941-948   DOI   ScienceOn
13 Villarejo, M., J.L. Davis, and S. Granett. 1983. Osmoregulation of alkaline phosphatase synthesis in Escherichia coli K-12. J. Bacteriol. 156, 975-978   PUBMED
14 Wanner, B.L., M.R. Wilmes, and D.C. Young. 1988. Control of bacterial alkaline phosphatase synthesis and variation in an Escherichia coli K-12 phoR mutant by adenyl cyclase, the cyclic AMP receptor protein, and the phoM operon. J. Bacteriol. 170, 1092-1102   DOI   PUBMED
15 Kurioka, S. and M. Matsuda. 1976. Phospholipase C assay using p-nitrophenylphosphorylcholine together with sorbitol and its application to studying the metal and detergent requirement of the enzyme. Anal. Biochem. 75, 281-289   DOI   ScienceOn
16 Hulett, F.M., E.E. Kim, C. Bookstein, N.V. Kapp, C.W. Edwards, and H.W. Wyckoff. 1991. Bacillus subtilis alkaline phosphatases III and IV: Cloning, sequencing and comparisons of deduced amino acid sequence with Escherichia coli alkaline phosphatase 3-D structure. J. Biol. Chem. 266, 1077-1084   PUBMED
17 Hulett, F.M., K. Stuckmann, D.B. Spencer, and T. Sanopoulou. 1986. Purification and characterization of the secreted alkaline phosphatase of Bacillus licheniformis MC14: identification of a possible precursor. J. Gen. Microbiol. 132, 2387-2395   PUBMED
18 Pal, S., B. Guhathakurta, D. Sasmal, R. Mallick, and A. Datta. 1997. Purification and characterization of a hemolysin with phospholipase C activity from Vibrio cholerae O139. FEMS Microbiol. Lett. 147, 115-120   DOI
19 Schmiel, D., G.M. Young, and V.L. Miller. 2000. The Yersinia enterocolitica phospholipase gene yplA is part of the flagellar regulon. J. Bacteriol. 182, 2314-2320   DOI
20 Sinai, A.P. and P.M. Bavoil. 1993. Hyper-invasive mutants define a novel Pho-regulated invasion pathway in Escherichia coli. Mol. Microbiol. 10, 1125-1137   DOI   ScienceOn
21 Guddal, P.H., T. Johansen, K. Schulstad, and C. Little. 1989. Apparent phosphate retrieval system in Bacillus cereus. J. Bacteriol. 171, 5702-5706   DOI   PUBMED
22 Gray, G.L., R.M. Berka, and M.L. Vasil. 1982. Phospholipase C regulatory mutation of Pseudomonas aeruginosa that results in constitutive synthesis of several phosphate-repressible proteins. J. Bacteriol. 150, 1221-1226   PUBMED
23 Mengaud, J., C. Braun-Brenton, and P. Cossart. 1991. Identification of phosphatidylinositol specific phospholipase C activity in Listeria monocytogenes: novel type of virulence factor? Mol. Microbiol. 5, 367-372   DOI   ScienceOn
24 Ostroff, R.M. and M.L. Vasil. 1987. Identification of a new phospholipase C activity by analysis of an insertional mutation in the hemolytic phospholipase C structural gene of Pseudomonas aeruginosa. J. Bacteriol. 169, 4597-4601   DOI   PUBMED
25 Testa, J., L.W. Daniel, and A.S. Kreger. 1984. Extracellular phospholipase $A_2$ and lysophospholipase produced by Vibrio vulnificus. Infect. Immun. 45, 458-463   PUBMED
26 Barker, A.P., A.I. Vasil, A. Filloux, G. Ball, P.J. Wilderman, and M.L. Vasil. 2004. A novel extracellular phospholipase C of Pseudomonas aeruginosa is required for phospholipid chemotaxis. Mol. Microbiol. 53, 1089-1098   DOI   ScienceOn
27 Blake, P.A., M.H. Merson, R.E. Weaver, D.G. Hollis, and P.C. Heublein. 1979. Disease caused by a marine Vibrio. Clinical characteristics and epidemiology. N. Engl. J. Med. 300, 1-5   DOI   PUBMED   ScienceOn
28 Linkous, D.A. and J.D. Oliver. 1999. Pathogenesis of Vibrio vulnificus. FEMS Microbiol. Lett. 174, 207-214   DOI
29 McCarter, L.L. and M. Silverman. 1987. Phosphate regulation of gene expression in Vibrio parahaemolyticus. J. Bacteriol. 169, 3441-3449   DOI   PUBMED
30 Terao, M. and B. Mintz. 1987. Cloning and characterization of a cDNA coding for mouse placental alkaline phosphatase. Proc. Natl. Acad. Sci. USA 84, 7051-7055
31 Sage, A.E. and M.L. Vasil. 1997. Osmoprotectant-dependent expression of plcH, encoding the hemolytic phospholipase C, is subject to novel catabolite repression control in Pseudomonas aeruginosa PAO1. 1997. J. Bacteriol. 179, 4874-4881   DOI   PUBMED
32 Spencer, D.B., C.P. Chen, and F.M. Hulett. 1981. Effect of cobalt on synthesis and activation of Bacillus licheniformis phosphatase. J. Bacteriol. 145, 926-933   PUBMED
33 Titball, R.W. 1993. Bacterial phospholipases C. Microbiol. Rev. 57, 347-366   PUBMED
34 Portnoy, D.A., S.L. Moseley, and S. Falkow. 1981. Characterization of plasmids and plasmid-associated determinants of Yersinia enterocolitica pathogenesis. Infect. Immun. 31, 775-792   PUBMED