Browse > Article

Isolation and Characterization of Cold-adapted Strains Producing ${\beta}-Galactosidase$  

Park Jeong-Won (Division of Life Sciences, College of Natural Sciences and Biotechnology Research Institute, Chungbuk National University)
Oh Yong-Sik (Division of Life Sciences, College of Natural Sciences and Biotechnology Research Institute, Chungbuk National University)
Lim Jai-Yun (Division of Life Sciences, College of Natural Sciences and Biotechnology Research Institute, Chungbuk National University)
Roh Dong-Hyun (Division of Life Sciences, College of Natural Sciences and Biotechnology Research Institute, Chungbuk National University)
Publication Information
Journal of Microbiology / v.44, no.4, 2006 , pp. 396-402 More about this Journal
Abstract
[ ${\beta}-Galactosidase$ ] is extensively employed in the manufacture of dairy products, including lactose-reduced milk. Here, we have isolated two gram-negative and rod-shaped coldadapted bacteria, BS 1 and HS 39. These strains were able to break down lactose at low temperatures. Although two isolates were found to grow well at $10^{\circ}C$, the BS 1 strain was unable to grow at $37^{\circ}C$. Another strain, HS-39, evidenced retarded growth at $37^{\circ}C$. The biochemical characteristics and the results of 16S rDNA sequencing identified the BS 1 isolate as Rahnella aquatilis, and showed that the HS 39 strain belonged to genus Buttiauxella. Whereas the R. aquatilis BS 1 strain generated maximal quantities of ${\beta}-galactosidase$ when incubated for 60h at $10^{\circ}C$, Buttiauxella sp. HS-39 generated ${\beta}-galactosidase$ earlier, and at slightly lower levels, than R. aquatilis BS 1. The optimum temperature for ${\beta}-galactosidase$ was $30^{\circ}C$ for R. aquatilis BS-1, and was $45^{\circ}C$ for Buttiauxella sp. HS-39, thereby indicating that R. aquatilis BS-1 was able to generate a cold-adaptive enzyme. These two cold-adapted strains, and most notably the ${\beta}-galactosidase$ from each isolate, might prove useful in some biotechnological applications.
Keywords
cold-adapted; ${\beta}-galactosidase$; Rahnella aquatilis; Buttiauxella sp;
Citations & Related Records

Times Cited By Web Of Science : 8  (Related Records In Web of Science)
Times Cited By SCOPUS : 9
연도 인용수 순위
1 Cavicchioli, R.T. and T. Thomas. 2000. Extremophiles, p. 317-337. In J. Lederberg, M. Alexander, B.R. Bloom, D. Hopwood, R. Hull, B.H. Iglewski, A.I. Laskin, S.G. Oliver, M. Schaechter, and W.C. Summers. Encylopedia of Microbiology, 2nd ed. Academic Press Inc, San Diego
2 Coombs, J.M. and J.E. Brenchley. 1999. Biochemical and phylogenetic analyses of a cold-active $\beta$-galactosidase from the lactic acid bacterium Carnobacterium piscicola BA. Appl. Environ. Microbiol. 65, 5443-5450
3 Groudieva, T., M. Kambourova, H. Yusef, M. Royter, R. Grote, H. Trinks, and G. Antranikian. 2004. Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen. Extremophiles 8, 475-488   DOI
4 Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/ 98/NT. Nucl. Acis. Symp. Ser. 41, 95-98
5 Laderman, K.A., B.R. Davis, H.C. Krutzsch, M.S. Lewis, Y.V. Griko, P.L. Privalov, and C.B. Anfinsen. 1993. The purification and characterization of an extremely thermostable $\alpha$-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. J. Biol. Chem. 268, 24394-24401
6 Miller, J.H. 1972. Experiments in molecular genetics. Cold Spring Habor Laboratory Press, Cold Spring Habor, New York, USA
7 Morita, R.Y. 1975. Psychrophilic bacteria. Bacteriol. Rev. 39, 144-167
8 Muller, H.E., D.J. Brenner, G.R. Fanning, P.A.D. Grimont, and P. Kampfer. 1996. Emended description of Buttiauxella agrestis with recognition of six new species of Buttiauxella and two new species of Kluyvera: Buttiauxella ferragutiae sp. nov., Buttiauxella gaviniae sp. nov., Buttiauxella brennerae sp. nov., Buttiauxella izardii sp. nov., Buttiauxella noackiae sp. nov., Buttiauxella warmboldiae sp. nov., Kluyvera cochleae sp. nov., and Kluyvera georgiana sp. nov. Int. J. Syst. Bacteriol. 46, 50-63   DOI   ScienceOn
9 Ohgiya, S., T. Hoshino, H. Okuyama, S. Tanaka, and K. Ishizaki. 1999. Biotechnology of enzymes from cold-adapted microorganisms. Springer-Verlag
10 Sheridan, P.P. and J.E. Brenchley. 2000. Characterization of a salt-tolerant family 42 $\beta$-galactosidase from a psychrophilic antarctic Planococcus isolate. Appl. Environ. Microbiol. 66, 2438-2444   DOI
11 Triveni, P.S. 1975. $\beta$-Galactosidase technology: a solution to the lactose probelm. Crit. Rev. Food Technol. 5, 323-354
12 Saiki, R.K., D.H. Gelfand, S. Stoffel, S.J. Scharf, R. Higuchi, G.T. Horn, K.B. Mullis, and H.A. Erlich. 1988. Primerdirected enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487-491   DOI
13 Marshall, C.J. 1997. Cold-adapted enzymes. Trends Biotechnol. 15, 359-364   DOI   ScienceOn
14 Feller, G., Z. Zekhnini, J. Lamotte-Brasseur, and C. Gerday. 1997. Enzymes from cold-adapted microorganisms. The class C $\beta$-lactamase from the antarctic psychrophile Psychrobacter immobilis A5. Eur. J. Biochem. 244, 186- 191   DOI   ScienceOn
15 Loveland, J., K. Gutshall, J. Kasmir, P. Prema, and J.E. Brenchley. 1994. Characterization of psychrotrophic microorganisms producing $\beta$-galactosidase activities. Appl. Environ. Microbiol. 60, 12-18
16 Gerday, C., M. Aittaleb, M. Bentahir, J.P. Chessa, P. Claverie, T. Collins, S. D'Amico, J. Dumont, G. Garsoux, D. Georlette, A. Hoyoux, T. Lonhienne, M.A. Meuwis, and G. Feller. 2000. Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol. 18, 103-107   DOI   ScienceOn
17 Cavicchioli, R., K.S. Siddiqui, D. Andrews, and K.R. Sowers. 2002. Low-temperature extremophiles and their applications. Curr. Opin. Biotechnol. 13, 253-261   DOI   ScienceOn
18 Gutshall, K.R., D.E. Trimbur, J.J. Kasmir, and J.E. Brenchley. 1995. Analysis of a novel gene and $\beta$-galactosidase isozyme from a psychrotrophic Arthrobacter isolate. J. Bacteriol. 177, 1981-1988   DOI
19 Margesin, R., C. Sproer, P. Schumann, and F. Schinner. 2003. Pedobacter cryoconitis sp. nov., a facultative psychrophile from alpine glacier cryoconite. Int. J. Syst. Evol. Microbiol. 53, 1291-1296   DOI   ScienceOn
20 Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform. 5, 150-163   DOI   ScienceOn
21 Nakagawa, T., R. Ikehata, M. Uchino, T. Miyaji, K. Takano, and N. Tomizuka. 2006. Cold-active acid $\beta$-galactosidase activity of isolated psychrophilic-basidiomycetous yeast Guehomyces pullulans. Microbiol. Res. 161, 75-79   DOI   ScienceOn
22 Yanahira, S., Y. Yabe, M. Nakakoshi, S. Miura, N. Matsubara, and H. Ishikawa. 1998. Structures of novel acidic galactooligosaccharides synthesized by Bacillus circulans $\beta$-galactosidase. Biosci. Biotechnol. Biochem. 62, 1791-1794   DOI   ScienceOn
23 Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876- 4882   DOI
24 Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425
25 Bronnenmeier, K., A. Kern, W. Liebl, and W.L. Staudenbauer. 1995. Purification of Thermotoga maritima enzymes for the degradation of cellulosic materials. Appl. Environ. Microbiol. 61, 1399-1407
26 Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press
27 Fujiwara, S. 2002. Extremophiles: developments of their special functions and potential resources. J. Biosci. Bioeng. 94, 518-525   DOI
28 Holt, G.H., N.R. Krieg, P.H.A. Sneath, J.T. Staley, and S.T. Williams. 1994. Bergey's manual of determinative bacteriology, 9th ed. Williams & Wilkins, Baltimore
29 Felsenstein, J. 1985. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39, 783-791   DOI   ScienceOn