Browse > Article

Production of Saccharogenic and Dextrinogenic Amylases by Rhizomucor pusillus A 13.36  

Silva Tony M. (Laboratorio de Bioquimica e Mierobiologia, IBILCE-Instituto de Instituto de Biociencias, Letras e Ciencias Exatas, UNESP- Universidade Estadual Paulista.)
Attili-Angelis Derlene (Departamento de Bioquimica e Microbiologia, Instituto de Biociencias, UNESP-Universidade EstadualPaulista)
Carvalho Ana Flavia Azevedo (Laboratorio de Bioquimica e Mierobiologia, IBILCE-Instituto de Instituto de Biociencias, Letras e Ciencias Exatas, UNESP- Universidade Estadual Paulista.)
Silva Roberto Da (Laboratorio de Bioquimica e Mierobiologia, IBILCE-Instituto de Instituto de Biociencias, Letras e Ciencias Exatas, UNESP- Universidade Estadual Paulista.)
Boscolo Mauricio (Laboratorio de Fisico-Quimica, IBILCE-Instituto de Instituto de Biociencias, Letras e Ciencias Exatas, UNESP-Universidade Estadual Paulista.)
Gomes Eleni (Laboratorio de Bioquimica e Mierobiologia, IBILCE-Instituto de Instituto de Biociencias, Letras e Ciencias Exatas, UNESP- Universidade Estadual Paulista.)
Publication Information
Journal of Microbiology / v.43, no.6, 2005 , pp. 561-568 More about this Journal
Abstract
A newly-isolated thermophilic strain of the zygomycete fungus Rhizomucor pusillus 13.36 produced highly active dextrinogenic and saccharogenic enzymes. Cassava pulp was a good alternative substrate for amylase production. Dextrinogenic and saccharogenic amylases exhibited optimum activities at a pH of 4.0-4.5 and 5.0 respectively and at a temperature of $75^{\circ}C$. The enzymes were highly thermostable, with no detectable loss of saccharogenic or dextrinogenic activity after 1 hand 6 h at $60^{\circ}C$, respectively. The saccharogenic activity was inhibited by $Ca^{2+}$ while the dextrinogenic was indifferent to this ion. Both activities were inhibited by $Fe^{2+}\;and\;Cu^{2+}$ Hydrolysis of soluble starch by the crude enzyme yielded $66\%$ glucose, $19.5\%$ maltose, $7.7\%$ maltotriose and $6.6\%$ oligosaccharides.
Keywords
amylase; Rhizomucor pusillus; thermo stability;
Citations & Related Records

Times Cited By Web Of Science : 8  (Related Records In Web of Science)
Times Cited By SCOPUS : 7
연도 인용수 순위
1 Adams, P.R. 1994. Extracellular amylase activity of Rhizomucor pusillus and Humicola lanuginosus at initial stages of growth. Mycology 128, 139-141
2 Brumm, P.J. 1998. Enzymatic production of dextrose. Cereal Food World. 40, 804-807
3 Cruz, R., L. Souza, E.H.E. Hoffmann, M.Z. Bellini, V.A. Cruz, and C.R. Vieira. 1997. Relationship between carbon source, production and pattern action of $\alpha$-amylase from Rhizopus sp. Rev. Microbiol. 28, 101-105
4 Friendrich, J., A. Cimerman, and A. Perdih. 1987. Mixed culture of Aspergillus awamori and Trichoderma reesei for bioconversion of apple distillery waste. Appl. Microbiol. Biotechnol. 26, 299-303   DOI
5 Gupta, R., P. Gigras, H. Mohapatra, V.K. Goswami, and B. Chauhan. 2003. Microbial $\alpha$-amylase: a biotechnological perspective. Process Biochem. 38, 1599-1616   DOI   ScienceOn
6 Jamuna, R. and S.V. Ramakrishna. 1989. SCP production and removal of organic acid from cassava starch industry by yeasts. J. Fermen. Bioeng. 67, 126-131   DOI
7 Jayachandran, S. and R. Ramabadran. 1970. Production of amylase by Thermoascus aurantiacus. Ind. J. Exp. Biol. 8, 344-345
8 Jin, B., H.J. van Leeuwen, B. Patel, H.W. Doelle, and Q. Yu. 1999. Production of fungal protein and glucoamylase by Rhizopus oligosporus from starch processing wastewater. Process Biochem. 34, 59-65   DOI   ScienceOn
9 Koch, R., K. Spreinat, K. Lemke, and G. Antranikian. 1991. Purification and properties of a hyperthermoactive $\alpha$-amylase from a newly isolated Pyrococcus furiosus. Arch. Microbiol. 155, 572-578   DOI
10 Leveque, E., S. Janecek, B. Haye, and A. Belarbi. 2000. Thermophilic archaeal amylolytic enzymes. Enzyme Microbiol. Technol. 26, 3-14   DOI   ScienceOn
11 Maheshwari, R., G. Bharadwaj, and M.K. Bath. 2000. Thermophilic fungi: their physiology and enzymes. Microbiol. Mol. Biol. Rev. 64, 461-488   DOI   ScienceOn
12 Mamo, G. and A. Gessesse. 1999. Purification and characterization of two raw-starch-digesting thermostable $\alpha$-amylases from a thermophilic Bacillus. Enzyme Microbiol. Technol. 25, 433-438   DOI   ScienceOn
13 Niehaus, F., C. Bertoldo, C. Kahler, and G. Antranikian. 1999. Extremophiles as a source of novel enzymes for industrial applications. Appl. Microbiol. Biotechnol. 51, 711-729   DOI   ScienceOn
14 Peixoto, S.C., J.A. Jorge, H.F. Terenzi, and M. deL. Polizelli. 2003. Rhizopus microsporus var. rhizopodiformis: a thermotolerant fungus with potential for production of thermostable amylases. Int. Microbiol. 6, 269-273   DOI   ScienceOn
15 Taylor, P.M., E.J. Napier, and I.D. Fleming. 1978. Some properties of a glucoamylase produced by the thermophilic fungus Humicola lanuginosus. Carb. Res. 61, 301-308   DOI   ScienceOn
16 Vandersall, A.S., R.G. Cameron, C.J. Nairn, G. Telenosky, and R.J. Wodzinski. 1995. Identification, characterization and partial purification of glucoamylase from A. niger (syn A ficuum) NRRL 3135. Prep. Biochem. 25, 29-55   DOI
17 Nigam, P. and D. Singh. 1995. Enzyme and microbial systems involved in starch processing. Enzyme Microbiol. Technol. 17, 770-778   DOI   ScienceOn
18 Vieille, C., D.S. Burdette, and J.G. Zeikus. 1996. Thermozymes. Biotechnol. Annu. Rev. 2, 1-83   DOI   PUBMED
19 Vieille, C. and G.J. Zeikus. 2001. Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65, 1-43   DOI   ScienceOn
20 Vihinen, M. and P. Mantsala. 1989. Microbial amylolytic enzymes. Crit. Rev. Biochem. Mol. Biol. 24, 329-418   DOI   ScienceOn
21 Mohapatra, B.R., U.C. Banerjee, and M. Bapuji. 1998 Characterization of a fungal amylase from Mucor sp. associated with the marine sponge Spirastella sp. J. Biotechnol. 60, 113-117   DOI   ScienceOn
22 Mouchacca, J. 1997. Thermophilic fungi: biodiversity and taxonomic status. Crypt Mycol. 18, 19-69
23 Takasaki, Y. 1982. Production maltohexaose by $\alpha$-amylase from Bacillus circulans G-6. Agric. Biol. Chem. 46, 1539-1547   DOI
24 Arnesen, S., S.H. Ericksen, J. Olsen, and B. Jensen. 1998. Increased production of $\alpha$-amylase from Thermomyces lanuginosus by addition of Tween 80. Enzyme. Microbiol. Technol. 23, 249-252   DOI   ScienceOn
25 Aquino, A.C., J.A. Jorge, H.F. Terenzi, and M.L. Polizeli. 2003. Studies on thermostable alpha-amylase from thermophilic fungus Scytalidium thermophilum. Appl. Microbiol. Biotechnol. 61, 323-328   DOI   PUBMED
26 Hoover, R. 2001. Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carboh. Polym. 45, 253-267   DOI   ScienceOn
27 Hsiu, J., E.H. Fischer, and E.A. Stein. 1964. Alpha-amylase as calcium- metalloenzymes. II. calcium and catalytic activity. Biochemistry 3, 61-66   DOI   ScienceOn
28 Aberle, T.H., W. Burchard, W. Vorwerg, and S. Radosta 1994. Conformation, contributions of amylase and amylopectin to the structural properties of starches from various sources. Starke 46, 329-335   DOI   ScienceOn
29 Adams, P.R. and J.J. Deploy. 1978. Enzymes produced by thermophilic fungi. Mycology 70, 906-910   DOI   ScienceOn
30 Kirk, P.M., P.F., Cannon, J.C. David, and J.A. Stalpers. 2001. Ainsworth and Bisby's Dicitonary of the Fungi, 9th ed. CAB International, Wallingford, U.S.A
31 Saboury, A.A. and F. Karbassi. 2000. Thermodynamic studies on the interaction of calcium ions with alpha-amylase. Thermochimica Acta, 362, 121-129   DOI   ScienceOn
32 Medda, G.L. and A.K. Chandra. 1980. New strains of Bacillus lincheniformis and Bacillus coagulans producing thermostable $\alpha$-amylase active at alkaline pH. J. Appl. Bacteriol. 48, 48-58
33 Bergmeyer, H.U., E. Bernt, F. Schimidt, and H. Stork. 1974. D-glucose determination with glucose oxidase and isomerase, p. 1205-1212. In H.V. Bergmeyer (ed.), Methods of Enzymatic Analysis, vol. 3. Weinheim:Verlag-Chimie, ISBN 3-527-35530-3
34 Brown, S.H. and R.M. Kelly. 1993. Characterization of amylolytic enzymes, having both $\alpha$-1,4 and $\alpha$-1,6 hydrolytic activity from thermophilic archaea Pyrococcus furiosus and Thermococcus litoralis. Appl. Environ. Microbiol. 59, 2614-2621   PUBMED
35 Joyet, P., N. Declerck, and C. Gaillardin. 1992. Hyperthermostable variants of a highly thermostable alpha-amylase. Biotechnol. 10, 1579-1583   DOI   ScienceOn
36 Somkuti, G.A. and D.H. Steinberg. 1980. Thermoacidophilic extracellular $\alpha$-amylase for Mucor pusillus. Dev. Ind. Microbiol. 21, 327-337
37 Laderman, K.A., B.R. Davies, H.C. Krutzsch, M.S. Lewis, Y.V. Griko, P.L. Privalov, and C.B. Anfinsen. 1993. The purification and characterization of an extremely thermostable a-amylase from hyperthermophilic acrchaebacterium Pyrococcus furiosus. J. Biol. Chem. 268, 24394-24401
38 Shaw, J.F., F.P. Lin, S.C. Chen, and H.C. Chen. 1995. Purification and properties of an extracellular $\alpha$-amylase from Thermus sp. Bot. Bull. Acad. Sc. 36, 195-200
39 Campos, L. and C.R. Felix. 1995. Purification and characterization of a glucoamylase from Humicola grisea. Appl. Environ. Microbiol. 61, 2436-2438   PUBMED
40 Koch, R., P. Zablowski, A. Spreinat, and G. Antranikian. 1990. Extremely thermostable amylolytic enzyme from the archaebacterium Pyrococcus furiosus. FEMS Microbiol. Lett. 71, 21-26   DOI
41 Sriroth, K., R. Chollkup, S. Chotineeranat, K. Piyachomkwan, and C. Oates. 2000. Processing cassava waste for improved biomass utilization. Biores. Technol. 71, 63-69   DOI   ScienceOn
42 Cereia, M., H.F. Terenzi, J.A. Jorge, L.J. Greene, J. Rosa, and M.L. Polizeli. 2000. Glucoamylase activity from the thermophilic fungus Scytalidium thermophilum. J. Basic Microbiol. 40, 83-92   DOI   ScienceOn
43 Glucoamylase activity from the thermophilic fungus Scytalidium thermophilum. J. Basic Microbiol. 40, 83-92   DOI   ScienceOn
44 Van der Maarel, M.J., B. van der Veen, J.C. Uitdehaag, H. Leemhuis, and L. Dijkhuizen. 2002. Properties and applications of starch-converting enzymes of the $\alpha$-amylases family. J. Biotechnol. 94, 137-155   DOI   ScienceOn