Browse > Article

Investigations on Bacteria as a Potential Biological Control Agent of Summer Chafer, Amphimallon solstitiale L. (Coleoptera: Scarabaeidae)  

Sezen Kazlm (Karadeniz Technical University, Faculty of Arts and Sciences, Department of Biology)
Demir Ismail (Karadeniz Technical University, Faculty of Arts and Sciences, Department of Biology)
Katl Hatice (Karadeniz Technical University, Faculty of Arts and Sciences, Department of Biology)
Demirbag Zihni (Karadeniz Technical University, Faculty of Arts and Sciences, Department of Biology)
Publication Information
Journal of Microbiology / v.43, no.5, 2005 , pp. 463-468 More about this Journal
Abstract
Studying the bacteria of hazardous insects allows the opportunity to find potentially better biological control agents. Therefore, in this study, bacteria from summer chafer (Amphimallon solstitiale L., Coleoptera: Scarabaeidae) we isolated and identified the insecticidal effects of bacteria isolated from A. solstitiale and Melolontha melolontha L. (common cockchafer, Coleoptera: Scarabaeidae) and the mixtures of these bacterial isolates were investigated on A. solstitiale larvae. Crystals from Bacillus sp. isolated from M. melolontha were also purified, and tested against the second and third-stage larvae of A. solstitiale. The bacterial isolates of A. solstitiale were identified as Pseudomonas sp., Pseudomonas sp., Bacillus cereus and Micrococcus luteus, based on their morphology, spore formation, nutritional features, and physiological and biochemical characteristics. The insecticidal effects of the bacterial isolates determined on the larvae of A. solstitiale were $90\%$ with B. cereus isolated from A. solstitiale, and $75\%$ with B. cereus, B. sphaericus and B. thuringiensis isolated from M. melolontha within ten days. The highest insecticidal effects of the mixed infections on the larvae of A. solstitiale were $100\%$ both with B. cereus+B. sphaericus and with B. cereus+B. thuringiensis. In the crystal protein bioassays, the highest insecticidal effect was $65\%$ with crystals of B. thuringiensis and B. sphaericus isolated from M. melolontha within seven days. Finally, our results showed that the mixed infections could be utilized as microbial control agents, as they have a $100\%$ insecticidal effect on the larvae of A. solstitiale.
Keywords
A. solstitiale; biological control; insecticidal activity; summer chafer;
Citations & Related Records

Times Cited By Web Of Science : 15  (Related Records In Web of Science)
Times Cited By SCOPUS : 13
연도 인용수 순위
1 Allen, A.A. 1995. Examples of antennal and fore-limb teratology in Coleoptera. Entomologist's Monthly Magazina 131, 1568-71
2 Broderick, N.A., R.M. Goodman, K.F. Raffa, and J.O. Handelsman. 2000. Synergy between zwittermicin A and Bacillus thuringiensis subsp. kurstaki against gypsy moth (Lepidoptera: Lymantridae). Environ. Entomol. 29, 101-107   DOI   ScienceOn
3 Crickmore, N., D.R. Zeigler, J. Feitelson, E. Schnepf, J. Van Rie, D. Lereclus, J. Baum, and D.H. Dean. 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 807-813   PUBMED
4 Glare, T.R., T.A. Jackson, and G. Zimmermann. 1993. Occurence of B. popillia and two nematode pathogens in populations of Amphimallon solstitialis (Col. Scarabaeidae) near Darmstadt. Germany, Entomophaga 38, 441-450   DOI   ScienceOn
5 Moar, W.J., M. Pusztzai-Carey, and T.P. Mack. 1995. Toxicity of purified proteins and the HD-1 strain from Bacillus thuringiensis againts lesser cornstalk borer (Lepidoptera: Pyralidae). J. Econ. Entomol. 88, 606-609
6 Sezen, K. and Z. Demirbag . 1999. Isolation and insecticidal activity of some bacteria from the hazelnut beetle (Balaninus nucum L.). Appl. Entomol. Zool. 34, 85-89
7 Sneath, A.P. 1986. In A.P. Sneath, N.S. Mair, M.S. Sharpe, and J.G. Holt (eds.), Bergey's manual of systematic bacteriology, Vol. 2, Williams and Wilkins, Baltimore, Maryland
8 Wirth, M.C., W.E. Walton, and B.A. Federici. 2000. Cyt1A from Bacillus thuringiensis restores toxicity of Bacillus sphaericus against resistant Culex quinquefascratus (Diptera: Culicidae). J. Med. Entomol. 37, 401-407   DOI   ScienceOn
9 Palleroni, N.J. 1986. In N.R. Krieg and J.G. Holt (eds.), Bergey's manual of systematic bacteriology, Vol. 1, The Williams and Wilkins, Baltimore, Maryland
10 Sivripoulou, A., L. Haritidou, E. Vasara, S. Aptosoglou, and S. Koliais. 2000. Correlation of the insecticidal activity of the Bacillus thuringiensis A4 strain against Bactrocera oleae (Diptera) with the 140-kDa crystal polypeptide. Curr. Microbiol. 41, 262-266   PUBMED
11 Lipa, J.J. and E. Wiland. 1972. Bacteria isolated from cutworms and their infectivity to Agrotis spp. (Lepidoptera, Noctuidae), Acta Microbiol. Pol. 4, 127-140
12 Burgerjon, A. and D. Martouret. 1971. Determination and significance of the host spectrum of Bacillus thuringiensis, p. 305- 325. In H.D. Burges and N.W. Hussey (eds.), Microbial control of insects and mites. Academic Press, New York, New York
13 Demir, I., K. Sezen, and Z. Demirbag. 2002. The first study on bacterial flora and biological control agent on Anoplus roboris (Sufr., Coleoptera). J Microbiol. 40, 104-108
14 Sezen, K., . Demir, and Z. Demirba . 2004. Study of the bacterial flora as a biological control agent of Agelastica alni L. (Coleoptera: Chrysomelidae). Biologia 59, 327-331
15 Thiery, I. and E. Frachon. 1997. Identification, isolation, culture and preservation of entomopathogenic bacteria, p. 55-73. In A.L. Lacey (ed.), Manual of techniques in insect pathology. Academic Press, London
16 Poinar, G.O. 1978. Identification of the Groups of Insect Pathogens, Plenum Press, New York, New York
17 Lipa, J.J., K.K. Aldebis, E. Vargas-Osuna, P. Caballero, C. Santiago- Alvarez, and P. Hernandez-Crespo. 1994. Occurrence, biological activity, and host range of entomopoxvirus B from Ocnogyna baetica (Lepidoptera: Arctiidae). J. Invertebr. Pathol. 63, 130-134   DOI   ScienceOn
18 Lopez-Meza, J.E. and J.E. Ibarra. 1996. Characterization of a novel strain of Bacillus thuringiensis, Appl. Environ. Microbiol. 62, 1306-1310   PUBMED
19 Christine, L.C. and R.J. Ted. 1992. Laboratory Experiments in Microbiology, Third Edition, The Benjamin/Cummings Publishing Company, Inc., California
20 Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265-267
21 Goffau, L.J.W-de. 1996. Population development and dispersal of Melolontha and other scarabaeidae in the Netherlands during the past ten years. Bulletin OILB SROP 19, 9-14
22 Katl, H., K. Sezen, A.O. Belduz, and Z. Demirbag. 2005. Characterization of a Bacillus thuringiensis subsp. kurstaki strain isolated from Malacosoma neustria L. (Lepidoptera: Lasiocampidae). Biologia 60, 301-305
23 Rowe, G.E., A. Margaritis, and H.T. Dulmage. 1987. Bioprocess developments in the production of bioinsecticides by Bacillus thuringiensis. Crit. Rev. Biotechnol. 6, 87-127   DOI
24 T. C. Tarlm ve Koyisleri Bakanligi. 1995. Zirai Mucadele Teknik Talimatlarl, Cilt 3, Ankara