Browse > Article

Utilization of Putrescine by Streptococcus pneumoniae During Growth in Choline-limited Medium  

Ware D. (Department of Microbiology, University of Mississippi Medical Center)
Watt J. (Research Service, Veterans Affairs Medical Center)
Swiatlo E. (Department of Microbiology, University of Mississippi Medical Center, Research Service, Veterans Affairs Medical Center)
Publication Information
Journal of Microbiology / v.43, no.5, 2005 , pp. 398-405 More about this Journal
Abstract
Polyamines such as putrescine are small, ubiquitous polycationic molecules that are required for optimal growth of eukaryotic and prokaryotic cells. These molecules have diverse effects on cell physiology and their intracellular content is regulated by de novo synthesis and uptake from the environment. The studies presented here examined the structure of a putative polyamine transporter (Pot) operon in Streptococcus pneumoniae (pneumococcus) and growth of pneumococci in medium containing putrescine substituted for choline. RT-PCR experiments demonstrated that the four genes encoding the Pot system are co-transcribed with murB, a gene involved in an intermediary step of peptidoglycan synthesis. Pneumococci grown in chemically-defined media (CDM) containing putrescine without choline enter logarithmic phase growth after 36-48 hs. However, culture density at stationary phase eventually reaches that of choline-containing medium. Cells grown in CDM-putrescine formed abnormally elongated chains in which the daughter cells failed to separate and the choline-binding protein PspA was no longer cell-associated. Experiments with CDM containing radiolabeled putrescine demonstrated that pneumococci concentrate this polyamine in cell walls. These data suggest that pneumococci can replicate without choline if putrescine is available and this polyamine may substitute for aminoalcohols in the cell wall teichoic acids.
Keywords
polyamine; putrescine; Streptococcus pneumoniae;
Citations & Related Records

Times Cited By Web Of Science : 12  (Related Records In Web of Science)
Times Cited By SCOPUS : 10
연도 인용수 순위
1 Jack, D.L., I.T. Paulsen, and M.H. Saier. 2000. The amino acid/ polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines, and organocations. Microbiology 146, 1797-1814   PUBMED
2 Jedrzejas, M.J. 2001. Pneumococcal virulence factors: structure, and function. Microbiol. Mol. Biol. Rev. 65, 187-207   DOI   ScienceOn
3 Kashiwagi, K. and K. Igarashi. 1988. Adjustment of polyamine contents in Escherichia coli. J. Bacteriol. 170, 3131-3135   PUBMED
4 Kashiwagi, K., H. Endo, H. Kobayashi, K. Takio, and K. Igarashi. 1995. Spermidine-preferential Uptake System in Escherichia coli. J. Biol. Chem. 270, 25377-25382   DOI   ScienceOn
5 Schiller, D., D. Kruse, H. Kneifel, R. Kramer, and A. Burkovski. 2000. Polyamine transport and role of potE in response to osmotic stress in Escherichia coli. J. Bacteriol. 182, 6247-6249   DOI   ScienceOn
6 Swiatlo, E., F.R. Champlin, S.C. Holman, W.W. Wilson, and J.M. Watt. 2002. Contribution of choline-binding proteins to cell surface properties of Streptococcus pneumoniae. Infect. Immun. 70, 412-415   DOI   ScienceOn
7 Kashiwagi, K., S. Miyamoto, F. Suzuki, H. Kobayashi and A. Igarashi. 1992. Excretion of putrescine by the putrescine-ornithine antiporter encoded by the potE gene of Escherichia coli. Proc. Natl. Acad. Sci. USA 89, 4529-4533
8 Schneider, E. and S. Hunke. 1998. ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATPhydrolyzing subunits/domains. FEMS Microbiol. Rev. 22, 1-20   DOI   ScienceOn
9 van de Rijn, I. and R.E. Kessler. 1980. Growth characteristics of group A streptococci in a new chemically defined medium. Infect. Immun. 27, 444-448   PUBMED
10 Antognoni, F., S. Del Duca, A. Kuraishi, E. Kawabe, T. Fukuchi- Shimogori, K. Kashiwagi, and K. Igarashi. 1999. Transcriptional inhibition of the operon for the spermidine uptake system by the substrate-binding protein PotD. J. Biol. Chem. 274, 1942-1948   DOI   ScienceOn
11 Ware, D. and E. Swiatlo. 2003. Structure of a polyamine transporter operon in Streptococcus pneumoniae and growth in defined mediium with putrescine or spermidine. In General meetIng Of the American Society for Microbiology. American Society for Microbiology, Washington, D.C
12 Igarashi, A. and K. Kashiwagi. 2000. Polyamines: mysterious modulators of cellular functions. Biochem. Biophys. Res. Comm. 271, 559-564   DOI   ScienceOn
13 Swiatlo, E. and D. Ware. 2003. Novel vaccine strategies with protein antigens of Streptococcus pneumoniae. FEMS Immunol. Med. Microbiol. 38, 1-7   DOI   ScienceOn
14 Briles, D.E., M.J. Crain, B.M. Gray, C. Forman, and J. Yother. 1992. Strong association between capsular type and virulence for mice among human isolates of Streptococcus pneumoniae. Infect. Immun. 60, 111-116   PUBMED
15 Igarashi, K. and K. Kashiwagi. 1999. Polyamine transport in bacteria and yeast. Biochem. J. 344, 633-642   DOI   ScienceOn
16 Sabelnikov, A.G., B. Greenberg, and S.A. Lacks. 1995. An extended -10 promoter alone directs transcription of the DpnII operon of Streptococcus pneumoniae. J. Mol. Biol. 250, 144-155   DOI   ScienceOn
17 Briles, D.E., R.C. Tart, E. Swiatlo, J. Dillard, P. Smith, K.A. Benton, B.A. Ralph, A. Brooks-Walter, M.J. Crain, S. Hollingshead, and L.S. McDaniel. 1998. Pneumococcal diversity: considerations for new vaccine strategies with emphasis on pneumococcal surface protein A (PspA). Clin. Microbiol. Rev. 11, 645-657   PUBMED
18 Tabor, H., E.W. Hafner, and Tabor, C.W. (1980). Construction of an Escherichia coli strain unable to synthesize putrescine, spermidine, or cadaverine: characterization of two genes controlling lysine decarboxylase. J. Bacteriol. 144, 952-956   PUBMED
19 Yother, J., K. Leopold, J. White, and W. Fischer. 1998. Generation and properties of a Streptococcus pneumoniae mutant which does not require choline or analogs for growth. J. Bacteriol. 180, 2093-2101
20 Kashiwagi, K., S. Miyamoto, E. Nukui, H. Kobayashi, and A. Igarashi. 1993. Functions of PotA and PotD proteins in spermidine- preferential uptake system in Escherichia coli. J. Biol. Chem. 268
21 Desai, B.V., H. Reiter, and D.A. Morrison. 2003. Choline starvation induces the gene licD2 in Streptococcus pneumoniae. J. Bacteriol. 185, 371-373   DOI   ScienceOn
22 Briles, D.E., J.D. King, M.A. Gray, L.S. McDaniel, E. Swiatlo, and K.A. Benton. 1996. PspA, a protection-eliciting pneumococcal protein: immunogenicity of isolated native PspA in mice. Vaccine 14, 858-867   DOI   ScienceOn
23 Briles, D.E., M. Nahm, K. Schroer, J. Davie, P. Baker, J. Kearney, and R. Barletta. 1981. Antiphosphocholine antibodies found in normal mouse serum are protective against intravenous infection with type 3 Streptococcus pneumoniae. J. Exp. Med. 153, 694-705   DOI   ScienceOn
24 Kamio, Y. 1987. Structural specificity of diamines covalently linked to peptidoglycan for cell growth of Veillonella alcalescens and Selenomonas ruminantium. J. Bacteriol. 169, 4837-40-256   PUBMED
25 Durand, J.M.B. and G.R. Bjork. (2003). Putrescine or a combination of methionine and arginine restores virulence gene expression in a tRNA modification-deficient mutant of Shigella flexneri. Mol. Microbiol. 47, 519-527   DOI   ScienceOn
26 Gupta, R., N. Hamasaki-Katagiri, C.W. Tabor, and H. Tabor. 2001. Effect of spermidine on the in vivo degradation of ornithine decarboxylase in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 98, 10620-10623
27 Hoskins, J., W.E. Alborn, Jr., J. Arnold, L.C. Blaszczak, S. Burgett, B.S. DeHoff, S.T. Estrem, L. Fritz, D.-J. Fu, W. Fuller, C. Geringer, R. Gilmour, J.S. Glass, H. Khoja, A.R. Kraft, R.E. Lagace, D.J. LeBlanc, L.N. Lee, E.J. Lefkowitz, and J. Lu et als. 2001. Genome of the bacterium Streptococcus pneumoniae Strain R6. J. Bacteriol. 183, 5709-5717   DOI   ScienceOn
28 Tettelin, H., K.E. Nelson, I.T. Paulsen, J.A. Eisen, et al. (2001). Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293, 498-506   DOI   PUBMED   ScienceOn
29 Driessen, A.J.M., E.J. Smid, and W.N. Konongs. 1988. Transport of diamines by Enterococcus faecalis is mediated by an agmatineputrescine antiporter. J. Bacteriol. 170, 4522-4527   PUBMED
30 The Biology and Chemistry of Polyamines. 1989. In S.H. Goldemberg and I.D. Algranati (eds.), The biology and chemistry of polyamines. IRL Press, Argentina
31 Chattopadhyay, M.K., C.W. Tabor, and H. Tabor. 2003. Polyamines protect Escherichia coli cells from the toxic effect of oxygen. Proc. Natl. Acad. Sci. USA 100, 2261-2265
32 Samartzidou, H., M. Mehrazin, Z. Xu, M.J. Benedik and A.H. Delcour, 2003. Cadaverine inhibition of porin plays a role in cell survival at acidic pH. J. Bacteriol. 185, 13-19   DOI   ScienceOn
33 Kamio, Y., Y. Itoh, and Y. Terawaki. 1984. Chemical structure of peptidoglycan in Selenomonas ruminantium: cadaverine links covalently to the D-glutamic residue of peptidoglycan. J. Bacteriol. 146, 49-53
34 Mosser, J.L. and A. Tomasz. 1970. Choline-containing teichoic acid as a structural component of pneumococcal cell wall and its role in sensitivity to lysis by an autolytic enzyme. J. Biol. Chem. 245, 287-290   PUBMED
35 Neilsen, H., J. Engelbrecht, S. Brunak, and G. von Heijne. 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering 10, 1-6   DOI
36 Polissi, A., A. Pontiggia, G. Feger, M. Altieri, H. Mottl, L. Ferrari, and D. Simon. 1998. Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect. Immun. 66, 5620- 5629   PUBMED
37 Kamio, Y. and K. Nakamura. 1987. Putrescine and cadaverine are constituents of peptidoglycan in Veillonella alcalescens and Veillonella parvula. J. Bacteriol. 169, 2881-2884   PUBMED