Browse > Article

Molecular Detection of $\alpha-Glucosidase$ Inhibitor-producing Actinomycetes  

Hyun Chang-Gu (Laboratory of Biotech and Drug Discovery, Chem Tech Research Incorporation (C-TRI) Kowoon Institute of Technology Innovation)
Kim Seung-Young (Laboratory of Biotech and Drug Discovery, Chem Tech Research Incorporation (C-TRI) Kowoon Institute of Technology Innovation)
Hur Jin-Haeng (Laboratory of Biotech and Drug Discovery, Chem Tech Research Incorporation (C-TRI) Kowoon Institute of Technology Innovation)
Seo Myung-Ji (Laboratory of Biotech and Drug Discovery, Chem Tech Research Incorporation (C-TRI) Kowoon Institute of Technology Innovation)
Suh Joo-Won (Division of Bioscience & Bioinformatics, MyongJi University)
Kim Soon-Ok (Laboratory of Biotech and Drug Discovery, Chem Tech Research Incorporation (C-TRI) Kowoon Institute of Technology Innovation)
Publication Information
Journal of Microbiology / v.43, no.3, 2005 , pp. 313-318 More about this Journal
Abstract
In this study, we demonstrate the use of a PCR-based method for the detection of the specific genes involved in natural-product biosynthesis. This method was applied, using specifically designed PCR primers, to the amplification of a gene segment encoding for sedo-heptulose 7-phosphate cyclase, which appears to be involved in the biosynthetic pathways of $C_7N$ aminoacyclitol or its keto analogue-containing metabolites, in a variety of actinomycetes species. The sequences of DNA fragments (about 540 bp) obtained from three out of 39 actinomycete strains exhibited a high degree of homology with the sedo-heptulose 7-phosphate cyclase gene, which has been implicated in acarbose biosynthesis. The selective cultivation conditions of this experiment induced the expression of these loci, indicating that the range of $C_7N$ aminoacyclitol or its keto analogue-group natural products might be far greater than was previously imagined. Considering that a total of approximately 20 $C_7N$ aminoacyclitol metabolites, or its keto analogue-containing metabolites, have been described to date, it appears likely that some of the unknown loci described herein might constitute new classes of $C_7N$ aminoacyclitol, or of its keto analogue-containing metabolites. As these metabolites, some of which contain valienamine, are among the most potent antidiabetic agents thus far discovered, the molecular detection of specific metabolite-producing actinomycetes may prove a crucial step in current attempts to expand the scope and diversity of natural-product discovery.
Keywords
sedo-heptulose 7-phosphate cyclase; molecular method;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403-410   DOI   PUBMED
2 Dong, H., T. Mahmud, I. Tornus, S. Lee, and F.G. Floss. 2001. Biosynthesis of the validamycins: identification of intermediates in the biosynthesis of validamycin A by Streptomyces hygroscopicus var. limoneus. J. Am. Chem. Soc. 123, 2733-2742   DOI   ScienceOn
3 Yoo, J.C., J.M. Han, S.K. Nam, O.H. Ko, C.H. Choi, K.H. Kee, J.K. Sohng, J.S. Jo, and C.N. Seong. 2002. Characterization and cytotoxic activities of nonadecanoic acid produced by Streptomyces scabiei subsp. chosunensis M0137 (KCTC 9927). J. Microbiol. 40, 331-334
4 Zazopoulos, E., K. Huang, A. Staffa, W. Liu, B.O. Bachmann, K. Nonaka, J. Ahlert, J.S. Thorson, B. Shen, and C.M. Farnet. 2003. A Genomics-guided approach for discovering and expressing cryptic metabolic pathways. Nat. Biotech. 21, 187-190   DOI   ScienceOn
5 Stratmann, A., T. Mahmud, S. Lee, J. Distler, H.G. Floss, and W. Piepersberg. 1999. The AcbC protein from Actinoplanes species is a C7-cyclitol synthase related to 3-dehydroquinate synthases and is involved in the biosynthesis of the $\alpha$-glucosidase inhibitor acarbose. J. Biol. Chem. 274, 10889-10896   DOI   ScienceOn
6 Weber, T., K. Welzel, S. Pelzer, A. Vente, and W. Wohlleben. 2003. Exploiting the genetic potential of polyketide producing streptomycetes. J. Biotechnol. 106, 221-232   DOI   PUBMED   ScienceOn
7 Naganawa, H., H. Hashizume, Y. Kubota, R. Sawa, Y. Takahashi, K. Arakawa, S.G. Bowers, and T. Mahmud. 2002. Biosynthesis of the cyclitol moiety of pyralomicin 1a in Nonomuraea spiralis MI178-34F18. J. Antibiot. (Tokyo). 55, 578-584   DOI   PUBMED   ScienceOn
8 Hyun, C.G., S.S. Kim, J.K. Sohng, J.J. Hahn, J.W. Kim, and J.W. Suh. 2000. An efficient approach for cloning the dNDP-glucose synthase gene from actinomycetes and its application in Streptomyces spectabilis, a spectinomycin producer. FEMS Microbiol. Lett. 183, 183-189   DOI   ScienceOn
9 Chen, X., Y. Fan, Y. Zheng, and Y. Shen. 2003. Properties and production of valienamine and its related analogues. Chem. Rev. 103, 1955-1977   DOI   ScienceOn
10 Namiki, S., K. Kangouri, T. Nagate, H. Hara, K. Sugita, and S. Omura. 1982. Studies on the alpha-glucoside hydrolase inhibitor, adiposin. I. isolation and physicochemical properties. J. Antibiot. (Tokyo). 35, 1234-1236   DOI   PUBMED
11 Mahmud, T., S. Lee, and H.G. Floss. 2001. The biosynthesis of acarbose and validamycin. Chem. Rec. 1, 300-310   DOI   ScienceOn
12 Jensen, P.R, T. Mince, and F. William. 2003. The true potential of the marine microorganism. Drug Discovery Today 17-19   PUBMED
13 Mahmud, T. 2003. The C7N aminocyclitol family of natural products. Nat. Prod. Rep. 20, 137-166   DOI   PUBMED   ScienceOn
14 Ikeda, H., J. Ishikawa, A. Hanamoto, M. Shinose, H. Kikuchi, T. Shiba, Y. Sakaki, M. Hattori, and S. Omura. 2003. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21, 526-531   DOI   ScienceOn
15 Bentley, S.D., K.F. Chater, A.M. Cerdeno-Tarraga, G.L. Challis, N.R. Thomson, K.D. James, D.E. Harris, M.A. Quail, H. Kieser, D. Harper, A. Bateman, S. Brown, G. Chandra, C.W. Chen, M. Collins, A. Cronin, A. Fraser A. Goble, J. Hidalgo, T. Hornsby, S. Howarth, C.H. Huang, T. Kieser, L. Larke, L. Murphy, K. Oliver, S. O'Neil, E. Rabbinowitsch, M.A. Rajandream, K. Rutherford, S. Rutter, K. Seeger, D. Saunders, S. Sharp, R. Squares, S. Squares, K. Taylor, T. Warren, A. Wietzorrek, J. Woodwardm, B.G. Barrell, J. Parkhill, and D.A. Hopwood. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141-147   DOI   ScienceOn
16 Donadio, S., M. Sosio, and G. Lancini. 2002. Impact of the first Streptomyces genome sequence on the discovery and production of bioactive substances. Appl. Microbiol. Biotechnol. 60, 377-380   DOI   ScienceOn
17 Vertesy, L., H.W. Fehlhaber, and A. Schulz. 1984. The trehalase inhibitor salbostatin, a novel metabolite from Streptomyces albus, ATCC21838. Angew. Chem. Int. Ed. 33, 1844-1846
18 Regina H., S. Silke, T. Ralf, and A. Zeeck. 2000. Biosynthesis of gabosines A, B, and C, carba sugars from Streptomyces cellulosae. Eur. J. Org. Chem. 10, 1883-1887
19 Yokose, K., K. Ogawa, T. Sano, K. Watanabe, H.B. Maruyama, and Y. Suhara. 1983. New alpha-amylase inhibitor, trestatins. I. isolation, characterization and biological activities of trestatins A, B and C. J. Antibiot. (Tokyo). 36, 1157-1165   DOI   PUBMED
20 Higgins, D.G. and P.M. Sharp. 1988. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene. 73, 237-244   DOI   ScienceOn
21 Dahlqvist, A. 1970. Assay of intestinal dissacharidase. Enzymol. Biol. Clin. 11, 52-56   DOI   PUBMED
22 Kim, B.S., J.Y. Lee, and B.K. Hwang. 1998. Diversity of actinomycetes antagonistic to plant pathogenic fungi in cave and seamud soils of Korea. J. Microbiol. 36, 86-92