Browse > Article

Cytochrome $C_{550}$ is Related to Initiation of Sporulation in Bacillus subtilis  

Shin Inji (Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University)
Ryu Han-Bong (Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University)
Yim Hyung-Soon (Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University)
Kang Sa-Ouk (Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University)
Publication Information
Journal of Microbiology / v.43, no.3, 2005 , pp. 244-250 More about this Journal
Abstract
The effect of cytochrome $c_{550}$ encoded by cccA in Bacillus subtilis during the event of sporulation was investigated. The sporulation of cccA-overexpressing mutant was significantly accelerated, while disruptant strain showed delayed sporulation in spite of the same growth rate. Activity of sporulation stage-0-specific enzyme, extracellular $\alpha-amylase$ of mutant strains was similar to that of the control strain, but cccA-overexpressing mutant exhibited higher activity of stage-II-specific alkaline phosphatase and stage-III-specific glucose dehydrogenase when compared to deletion mutant and control strain. Northern blot analysis also revealed that cccA-overexpressing mutant showed high level of spo0A transcripts, while the disruptant rarely expressed spo0A. These results suggested that although cytochrome $c_{550}$ is dispensable for growth and sporulation, expression of cccA may play an important role for initiation of sporulation through regulation of spo0A expression.
Keywords
B. subtilis; cccA; spo0A; sporulation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Bengtsson, J., C. Rivolta, L. Hederstedt, and D. Karamata. 1999. Bacillus subtilis contains two small c-type cytochromes with homologous heme domains but different types of membrane anchors. J. Biol. Chem. 274, 26179-26184   DOI
2 Fujita, Y., R. Ramaley, and E. Freese. 1977. Location and properties of glucose dehydrogenase in sporulating cells and spores of Bacillus subtilis. J. Bacteriol. 132, 282-293   PUBMED
3 Milhaud, P. and G. Balassa. 1973. Biochemical genetics of bacterial sporulation. IV. Sequential development of resistances to chemical and physical agents during sporulation of Bacillus subtilis. Mol. Gen. Genet. 125, 241-250   DOI   ScienceOn
4 Pearson, I.V., M.D. Page, R.J. van Spanning, and S.J. Ferguson. 2003. A mutant of Paracoccus denitrificans with disrupted genes coding for cytochrome $c_{550}$ and pseudoazurin establishes these two proteins as the in vivo electron donors to cytochrome cd1 nitrite reductase. J. Bacteriol. 185, 6308-6315   DOI   ScienceOn
5 Schaeffer, P. 1969. Sporulation and the production of antibiotics, exoenzymes and exotoxins. Bacteriol. Rev. 33, 48-71   PUBMED
6 von Wachenfeldt, C. and L. Hederstedt. 1993. Physico-chemical characterisation of membrane-bound and water-soluble forms of Bacillus subtilis cytochrome $c_{550}$. Eur. J. Biochem. 212, 499-509   DOI   ScienceOn
7 Van Dessel, W., L. Van Mellaert, N. Geukens, E. Lammertyn, and J. Anne. 2004. Isolation of high quality RNA from Streptomyces. J. Microbiol. Methods 58, 135-137   DOI   ScienceOn
8 Molle, V., M. Fujita, S.T. Jensen, P. Eichenberger, J.E. Gonzalez- Pastor, J.S. Liu, and R. Losick. 2003. The Spo0A regulon of Bacillus subtilis. Mol. Microbiol. 50, 1683-1701   DOI   ScienceOn
9 Deuerling, E., A. Mogk, C. Richter, M. Purucker, and W. Schumann. 1997. The ftsH gene of Bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation and secretion. Mol. Microbiol. 23, 921-933   DOI   ScienceOn
10 Spiegelman, G.B., T.H. Bird, and V. Voon. 1995. Transcription regulation by the Bacillus subtilis response regulator Spo0A, p. 159-179. In J.A. Hoch and T.J. Silhavy (eds.), Two-Component Signal Transduction. American Society for MicrobiologyWashington, D.C
11 Yoon, K.Y., E.E. Woodams, and Y.D. Hang. 2004. Probiotication of tomato juice by lactic acid bacteria. J. Microbiol. 42(4), 315-318
12 Kim, D.Y., C.H. Cha, W.S. Oh, Y.J. Yoon, and J.W. Kim. 2004. Expression of the promoter for the maltogenic amylase. J. Microbiol. 42(4), 319-327
13 Barker, P.D. and S.J. Ferguson. 1999. Still a puzzle: why is haem covalently attached in c-type cytochromes? Structure Fold. Des. 7, R281-290   DOI   ScienceOn
14 Otten, M.F., J. van der Oost, W.N. Reijnders, H.V. Westerhoff, B. Ludwig, and R.J. van Spanning. 2001. Cytochromes $c_{550},\;c_{552},\; and\;c_1$ in the electron transport network of Paracoccus denitrificans: redundant or subtly different in function? J. Bacteriol. 183, 7017-7026   DOI   ScienceOn
15 Sadoff, H.L. 1966. Glucose dehydrogenase - soluble. I. Bacillus cereus. Methods Enzymol. 9, 103-107   DOI
16 Dubnau, D. and R. Davidoff-Abelson. 1971. Fate of transforming DNA following uptake by competent Bacillus subtilis, I. Formation and properties of the donor-recipient complex. J. Mol. Biol. 56, 209-221   DOI   PUBMED
17 Akrigg, A. and J. Mandelstam. 1978. Extracellular manganesestimulated deoxyribonuclease as a marker event in sporulation of Bacillus subtilis. Biochem. J. 172, 63-67   DOI   PUBMED
18 Burkholder, W.F. and A.D. Grossman. 2000. Regulation of the initiation of endospore formation in Bacillus subtilis, p. 151-166. In L.V. Brun and L.J. Shimkets (eds.), Prokaryotic Development. American Society for Microbiology, Washington, D.C
19 Akrigg, A. 1978. Purification and properties of a manganese-stimulated deoxyribonuclease produced during sporulation of Bacillus subtilis. Biochem. J. 172, 69-76   DOI   PUBMED
20 Meyer, T.E. and M.D. Kamen. 1982. New perspectives on c-type cytochromes. Adv. Protein. Chem. 35, 105-212   DOI   PUBMED
21 van der Oost, J., C. von Wachenfeld, L. Hederstedt, and M. Saraste. 1991. Bacillus subtilis cytochrome oxidase mutants: biochemical analysis and genetic evidence for two $aa_3$-type oxidases. Mol. Microbiol. 5, 2063-2072   DOI   ScienceOn
22 Lang, D.R., J. Felix, and D.G. Lundgren. 1972. Development of a membrane-bound respiratory system prior to and during sporulation in Bacillus cereus and its relation to membrane structure. J. Bacteriol. 110, 968-977   PUBMED
23 Schiött, T., M. Throne-Holst, and L. Hederstedt. 1997. Bacillus subtilis CcdA-defective mutants are blocked in a late step of cyto-chrome c biogenesis. J. Bacteriol. 179, 4523-4529   DOI   PUBMED
24 Burbulys, D., K.A. Trach, and J.A. Hoch. 1991. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64, 545-552   DOI   ScienceOn
25 Grossman, A.D. and R. Losick. 1988. Extracellular control of spore formation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 85, 4369-4373
26 Nicholson, W.L. and G.H. Chambliss. 1985. Isolation and characterization of a cis-acting mutation conferring catabolite repression resistance to $\alpha$-amylase synthesis in Bacillus subtilis. J. Bacteriol. 161, 875-881   PUBMED
27 Stephenson, K. and J.A. Hoch. 2002. Evolution of signalling in the sporulation phosphorelay. Mol. Microbiol. 46, 297-304   DOI   ScienceOn
28 von Wachenfeldt, C. and L. Hederstedt. 1990a. Bacillus subtilis 13- kilodalton cytochrome $c_{550}$ encoded by cccA consists of a membrane- anchor and a heme domain. J. Biol. Chem. 265, 13939-13948   PUBMED
29 Kroos, L., B. Zhang, H. Ichikawa, and Y.T. Yu. 1999. Control of sigma factor activity during Bacillus subtilis sporulation. Mol. Microbiol. 31, 1285-1294   DOI   ScienceOn
30 Setlow, P. 1993. Spore structure proteins, p. 801-809. In A.L. Sonenshein (ed.), Bacillus subtilis and Other Gram-Positive Bacteria; Biochemistry, Physiology and Molecular Genetics. American Society for Microbiology, Washington, D.C
31 von Wachenfeldt, C. and L. Hederstedt. 1990b. Bacillus subtilis holo-cytochrome $c_{550}$ can be synthesized in aerobic Escherichia coli. FEBS Lett. 270, 147-151   DOI   PUBMED   ScienceOn
32 Yu, J. and N.E. Le Brun. 1998. Studies of the cytochrome subunits of menaquinone: cytochrome c reductase (bc complex) of Bacillus subtilis. Evidence for the covalent attachment of heme to the cytochrome b subunit. J. Biol. Chem. 273, 8860-8866   DOI   ScienceOn
33 Felix, J.A. and D.G. Lundgren. 1973. Electron transport system associated with membranes of Bacillus cereus during vegetative growth and sporulation. J. Bacteriol. 115, 552-559   PUBMED
34 Fujita M., J.E. Gonzalez-Pastor, and R. Losick. 2005. High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis. J. Bacteriol. 187, 1357-1368   DOI   ScienceOn
35 Karow, M.L. and P.J. Piggot. 1995. Construction of gusA transcriptional fusion vectors for Bacillus subtilis and their utilization for studies of spore formation. Gene 163, 69-74   DOI   ScienceOn
36 Davidson, V.L. and M.A. Kumar. 1989. Cytochrome c550 mediates electron transfer from inducible periplasmic c-type cytochromes to the cytoplasmic membrane of Paracoccus denitrificans. FEBS Lett. 245, 271-273   DOI   PUBMED   ScienceOn
37 Schobert, M. and H. Görisch. 1999. Cytochrome $c_{550}$ is an essential component of the quinoprotein ethanol oxidation system in Pseudomonas aeruginosa: cloning and sequencing of the genes encoding cytochrome $c_{550}$ and an adjacent acetaldehyde dehydrogenase. Microbiology 145 (Pt 2), 471-481   DOI   ScienceOn
38 Sonenshein, A.L. 1989. Metabolic regulation of sporulation and other stationary phase phenomena, p. 109-130. In I. Smith, R.A. Slepecky, and P. Setlow (eds.), Regulation of Prokaryotic Development. American Society for Microbiology, Washington, D.C
39 Kenney, T.J. and C.P. Jr. Moran. 1987. Organization and regulation of an operon that encodes a sporulation-essential sigma factor in Bacillus subtilis. J. Bacteriol. 169(7), 3329-3339   DOI   PUBMED
40 Hoch, J.A. 1993. Regulation of the phosphorelay and the initiation of sporulation in Bacillus subtilis. Annu. Rev. Microbiol. 47, 441-465   DOI   PUBMED   ScienceOn