Browse > Article
http://dx.doi.org/10.3745/JIPS.02.0178

TOD: Trash Object Detection Dataset  

Jo, Min-Seok (Dept. of Electrical and Engineering, Korea University)
Han, Seong-Soo (Division of Liberal Studies, Kangwon National University)
Jeong, Chang-Sung (Dept. of Electrical and Engineering, Korea University)
Publication Information
Journal of Information Processing Systems / v.18, no.4, 2022 , pp. 524-534 More about this Journal
Abstract
In this paper, we produce Trash Object Detection (TOD) dataset to solve trash detection problems. A well-organized dataset of sufficient size is essential to train object detection models and apply them to specific tasks. However, existing trash datasets have only a few hundred images, which are not sufficient to train deep neural networks. Most datasets are classification datasets that simply classify categories without location information. In addition, existing datasets differ from the actual guidelines for separating and discharging recyclables because the category definition is primarily the shape of the object. To address these issues, we build and experiment with trash datasets larger than conventional trash datasets and have more than twice the resolution. It was intended for general household goods. And annotated based on guidelines for separating and discharging recyclables from the Ministry of Environment. Our dataset has 10 categories, and around 33K objects were annotated for around 5K images with 1280×720 resolution. The dataset, as well as the pre-trained models, have been released at https://github.com/jms0923/tod.
Keywords
Dataset; Deep Learning; Recognition; Trash Detection;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and A. C. Berg, "SSD: single shot multibox detector," in Computer Vision - ECCV 2016. Cham, Switzerland: Springer, 2016, pp. 21-37.
2 J. Redmon and A. Farhadi, "YOLOv3: an incremental improvement," 2018 [Online]. Available: https://arxiv.org/abs/1804.02767.
3 J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once: unified, real-time object detection," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, 2016, pp. 779-788.
4 J. Redmon and A. Farhadi, "YOLO9000: better, faster, stronger," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, 2017, pp. 6517-6525.
5 G. E. Sakr, M. Mokbel, A. Darwich, M. N. Khneisser, and A. Hadi, "Comparing deep learning and support vector machines for autonomous waste sorting," in Proceedings of 2016 IEEE International Multidisciplinary Conference on Engineering Technology (IMCET), Beirut, Lebanon, 2016, pp. 207-212.
6 T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and C. Lawrence Zitnick, "Microsoft coco: common objects in context," in computer vision - ECCV 2014. Cham, Switzerland: Springer, 2014, pp. 740-755.
7 K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," 2014 [Online]. Available: https://arxiv.org/abs/1409.1556.
8 Z. Cai and N. Vasconcelos, "Cascade R-CNN: delving into high quality object detection," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, 2018, pp. 6154-6162.
9 J. Wang and Y. Yagi, "Shadow extraction and application in pedestrian detection," EURASIP Journal on Image and Video Processing, vol. 2014, article no. 12, 2014. https://doi.org/10.1186/1687-5281-2014-12   DOI
10 W. M. D. B. Wan Zaki, A. Hussain, and M. Hedayati, "Moving object detection using keypoints reference model," EURASIP Journal on Image and Video Processing, vol. 2011, article no. 13, 2011. https://doi.org/10.1186/1687-5281-2011-13   DOI
11 K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, 2016, pp. 770-778.
12 Y. Liao, "A web-based dataset for garbage classification based on Shanghai's rule," International Journal of Machine Learning and Computing, vol. 10, no. 4, pp. 599-604, 2020.   DOI
13 S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: towards real-time object detection with region proposal networks," Advances in Neural Information Processing Systems, vol. 28, pp. 91-99, 2015.
14 K. Kim, H. I. Choi, and K. Oh, "Object detection using ensemble of linear classifiers with fuzzy adaptive boosting," EURASIP Journal on Image and Video Processing, vol. 2017, article no. 40, 2017. https://doi.org/10.1186/s13640-017-0189-y   DOI
15 J. Zhu, F. Yu, G. Liu, M. Sun, D. Zhao, Q. Geng, and J. Su, "Classroom roll-call system based on ResNet networks," Journal of Information Processing Systems, vol. 16, no. 5, pp. 1145-1157, 2020.   DOI
16 D. Yadav, S. Sanchez-Cuadrado, and J. Morato, "Optical character recognition for Hindi language using a neural-network approach," Journal of Information Processing Systems, vol. 9, no. 1, pp. 117-140, 2013.   DOI
17 Y. Chu, C. Huang, X. Xie, B. Tan, S. Kamal, and X. Xiong, "Multilayer hybrid deep-learning method for waste classification and recycling," Computational Intelligence and Neuroscience, vol. 2018, article no. 5060857, 2018. https://doi.org/10.1155/2018/5060857   DOI
18 P. Zhang, Q. Zhao, J. Gao, W. Li, and J. Lu, "Urban street cleanliness assessment using mobile edge computing and deep learning," IEEE Access, vol. 7, pp. 63550-63563, 2019.   DOI
19 G. Mittal, K. B. Yagnik, M. Garg, and N. C. Krishnan, "Spotgarbage: smartphone app to detect garbage using deep learning," in Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 2016, pp. 940-945.
20 M. S. Rad, A. V. Kaenel, A. Droux, F. Tieche, N. Ouerhani, H. K. Ekenel, and J. P. Thiran, "A computer vision system to localize and classify wastes on the streets," in Computer Vision Systems. Cham, Switzerland: Springer, 2017, pp. 195-204.