Browse > Article
http://dx.doi.org/10.20307/nps.2021.27.1.1

Effect of Curcuma xanthorrhiza Gel on Methicillin-Resistant Staphylococcus aureus-Infected Second-Degree Burn Wound in Rats  

Kesumayadi, Irfan (Faculty of Medicine, Universitas Diponegoro)
Almas, Ayyasi Izaz (Faculty of Medicine, Universitas Diponegoro)
Rambe, Ilham Nur Hakim (Faculty of Engineering, Universitas Diponegoro)
Hapsari, Rebriarina (Faculty of Medicine, Universitas Diponegoro)
Publication Information
Natural Product Sciences / v.27, no.1, 2021 , pp. 1-9 More about this Journal
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infection often complicates burn wounds. Mupirocin is the antibiotic of choice for superficial MRSA infection, and its resistance is on the rise due to its frequent and widespread use. This study aimed to develop and evaluate Curcuma xanthorriza extract (CXE)-containing gel as a topical agent against MRSA-infected second-degree burn wound in rats. CXE was obtained using maceration with 96% ethanol. Xanthorrhizol level, antibacterial, and antioxidant activity were evaluated using a standardized method. In vivo, the wound's healing and bacterial load were evaluated every three days, whereas the histopathology of the wound was examined on day 12 of treatment. One-Way ANOVA and Kruskal-Wallis test were used to analyze the data. In this study, 27.0% and 7.10% of the obtained CXE were xanthorrhizol and curcumin, respectively. Additionally, an IC50 of 64.27 ppm was shown in antioxidant activity measurement, and MIC against MRSA was 5 mg/ml. Treatment with CXE-containing gels showed a significant reduction in bacterial load and proliferation of connective tissue in a dose-dependent manner. In conclusion, CXE-containing gel showed a greater reduction of bacterial load and more advanced wound healing phase than mupirocin.
Keywords
Curcuma xanthorrhiza; Xanthorrhizol; MRSA; Burn Wound;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Antonov, N. K.; Garzon, M. C.; Morel, K. D.; Whittier, S.; Planet, P. J.; Lauren, C. T. Antimicrob. Agents Chemother. 2015, 59, 3350-3356.   DOI
2 Church, D.; Elsayed, S.; Reid, O.; Winston, B.; Lindsay, R. Clin. Microbiol. Rev. 2006, 19, 403-434.   DOI
3 Mustaffa, F.; Indurkar, J.; Ismail, S.; Shah, M.; Mansor, S. M. Molecules 2011, 16, 3037-3047.   DOI
4 Chung, W. Y.; Park, J. H.; Kim, M. J.; Kim, H. O.; Hwang, J. K.; Lee, S. K.; Park, K. K. Carcinogenesis 2007, 28, 1224-1231.   DOI
5 Oh, H. I.; Shim, J. S.; Gwon, S. H.; Kwon, H. J.; Hwang, J. K. Phytother. Res. 2009, 23, 1299-1302.   DOI
6 Caley, M. P.; Martins, V. L.; O'Toole, E. A. Adv. Wound Care (New Rochelle). 2015, 4, 225-234.   DOI
7 Weinstein, M. P.; Patel, J. B.; Burnham, C.A.; Campeau, S.; Coville, P.S.; Doern, C.; Eliopoulos, G. M.; Galas, M. F.; Humphries, R. M.; Jenkins, S. G. II.; Lewis, J. S.; Limbago, B.; Mathers, A. J.; Mazzulli, T.; Munro, S.D.; Danies, M.O.S.; Patel, R.; Richter, S. S.; Satlin, M.; Swenson, J. M.; Wong, A.; Wang, W. F.; Zimmer, B. L. CLSI document M07: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Clinical and Laboratory Standards Institute; U.S.A, 2018, pp 24.
8 Chopra, S.; Harjai, K.; Chhibber, S. Int. J. Med. Microbiol. 2016, 306, 707-716.   DOI
9 Sukandar, E. Y.; Kurniati, N. F.; Anggadiredja, K.; Kamil, A. Int. J. Pharm. Pharm. Sci. 2016, 8, 108-111.
10 Wikaningtyas, P.; Sukandar, E. Y. Asian Pac. J. Trop. Biomed. 2016, 6, 16-19.   DOI
11 Gosain, A.; DiPietro, L. A. World J. Surg. 2004, 28, 321-326.   DOI
12 Miyazaki, H.; Kinoshita, M.; Ono, S.; Seki, S.; Saitoh, D. Shock 2015, 44, 252-257.   DOI
13 Lee, C. K.; Chung, W. Y.; Park, K. K. Cancer Res. 2004, 64, 727.
14 Rasik, A. M.; Shukla, A. Int. J. Exp. Pathol. 2000, 81, 257-263.   DOI
15 Brauchle, M.; Funk, J. O.; Kind, P.; Werner, S. J. Biol. Chem. 1996, 271, 21793-21797.   DOI
16 Roy, S.; Khanna, S.; Nallu, K.; Hunt, T. K.; Sen, C. K. Mol. Ther. 2006, 13, 211-220.   DOI
17 Rempe, C. S.; Burris, K. P.; Lenaghan, S. C.; Stewart Jr, C. N. Front. Microbiol. 2017, 8, 422.   DOI
18 Marchese, C.; Maresca, V.; Cardinali, G.; Belleudi, F.; Ceccarelli, S.; Bellocci, M.; Frati, L.; Torrisi, M. R.; Picardo, M. Oncogene. 2003, 22, 2422-2431.   DOI
19 Vivekananda, J.; Lin, A.; Coalson, J. J.; King, R. J. J. Biol. Chem. 1994, 269, 25057-25061.   DOI
20 Dal Secco, D.; Paron, J. A.; de Oliveira, S. H.; Ferreira, S. H.; Silva, J. S.; de Queiroz Cunha, F. Nitric Oxide 2003, 9, 153-164.   DOI
21 Kim, J. E.; Kim, H. E.; Hwang, J. K.; Lee, H. J.; Kwon, H. K.; Kim, B. I. J. Microbiol. 2008, 46, 228-232.   DOI
22 Mittal, M.; Siddiqui, M. R.; Tran, K.; Reddy, S. P.; Malik, A. B. Antioxid. Redox Signal. 2014, 20, 1126-1167.   DOI
23 Branski, L. K.; Al-Mousawi, A.; Rivero, H.; Jeschke, M. G.; Sanford, A. P.; Herndon, D. N. Surg. Infect. 2009, 10, 389-397.   DOI
24 Anenden, H. Burns, 2018, https://www.who.int/news-room/factsheets/detail/burns. Acccessed 14 January, 2021.
25 Schaefer, T. J.; Tannan, S. C. Thermal Burns; StatPearls Publishing: U.S.A, 2021, In StatPearls [Internet].
26 Almarghoub, M. A.; Alotaibi, A. S.; Alyamani, A.; Alfaqeeh, F. A.; Almehaid, F. F.; Al-Qattan, M. M.; Kattan, A. E. J. Burn Care Res. 2020, 41, 1122-1127.   DOI
27 de Macedo, J. L.; Santos, J. B. Mem. Inst. Oswaldo Cruz. 2005, 100, 535-539.   DOI
28 Amissah, N. A.; van Dam, L.; Ablordey, A.; Ampomah, O. W.; Prah, I.; Tetteh, C. S.; van der Werf, T. S.; Friedrich, A. W.; Rossen, J. W.; van Dijl, J. M.; Stienstra, Y. PloS one 2017, 12, e0181072.   DOI
29 Khan, T. M.; Kok, Y. L.; Bukhsh, A.; Lee, L. H.; Chan, K. G.; Goh, B. H. Germs 2018, 8, 113-125.   DOI