Browse > Article
http://dx.doi.org/10.20307/nps.2020.26.3.191

Fucoidan Induces Apoptosis in A2058 Cells through ROS-exposed Activation of MAPKs Signaling Pathway  

Ryu, Yea Seong (Department of Food and Nutrition, College of Natural Sciences, Duksung Women's University)
Hyun, Jin Won (Department of Biochemistry, School of Medicine and Institute for Nuclear Science and Technology, Jeju National University)
Chung, Ha Sook (Department of Food and Nutrition, College of Natural Sciences, Duksung Women's University)
Publication Information
Natural Product Sciences / v.26, no.3, 2020 , pp. 191-199 More about this Journal
Abstract
Fucoidan, a natural component of brown seaweed, has various biological activities such as anti-cancer activity, anti-oxidant, and anti-inflammatory against various cancer cells. However, the fucoidan has been implicated in melanoma cells via apoptosis signaling pathway. Therefore, we investigated apoptosis with fucoidan in A2058 human melanoma cells with dose- and time-dependent manners. In our results, A2058 cells viability decreased at relatively short-time and low-concentration through fucoidan. This effects of fucoidan on A2058 cells appeared to be mediated by the induction of apoptosis, as manifested by morphological changes through DNA-binding dye Hoechst 33342 staining. When a dose of 80 ㎍/mL fucoidan was treated, the cells were observed: crescent or ring-like structure, chromatin condensation, and nuclear fragmentation. With the increase at 100 ㎍/mL fucoidan, the cell membrane is intact throughout the total process, including membrane blebbing and loss of membrane integrity as well as increase of sub-G1 DNA. Furthermore, to understand the exact mechanism of fucoidan-treated in A2058 cells, western blotting was performed to detect apoptosis-related protein expression. In this study, Bcl-2 family proteins can be regulated by fucoidan, suggesting that fucoidan-induced apoptosis is modulated by intrinsic pathway. Therefore, expression of Bcl-2 and Bax may result in altered permeability, activating caspase-3 and caspase-9. And the cleaved form of poly ADP-ribose polymerase was detected in fucoidan-treated A2058 cells. These results suggest that A2058 cells are highly sensitive to growth inhibition by fucoidan via apoptosis, as evidenced by activation of extracellular signal-regulated kinases/p38/Bcl-2 family signaling, as well as alteration in caspase-9 and caspase-3.
Keywords
Fucoidan; apoptosis; ROS; MAPKs; A2058; melanoma cells;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Nishino, T.; Nishioka, C.; Ura, H.; Nagumo, T. Carbohydr. Res. 1994, 255, 213-224.   DOI
2 Bilan, M. I.; Grachev, A. A.; Ustuzhanina, N. E.; Shashkov, A. S.; Nifantiev, N. E.; Usov, A. I. Carbohydr. Res. 2002, 337, 719-730.   DOI
3 Kim, K. J.; Lee, O. H.; Lee, H. H.; Lee, B. Y. Toxicology 2010, 267, 154-158.   DOI
4 Ren, R.; Azuma, Y.; Ojima, T.; Hashimoto, T.; Mizuno, M.; Nishitani, Y.; Yoshida, M.; Azuma, T.; Kanazawa, K. Br. J. Nutr. 2013, 110, 880-890.   DOI
5 Cho, T. M.; Kim, W. J.; Moon, S. K. Food Chem. Toxicol. 2014, 64, 344-352.   DOI
6 Zhang, W.; Oda, T.; Yu, Q.; Jin, J. O. Mar. Drugs 2015, 13, 1084-1104.   DOI
7 Kim, K. J.; Yoon, K. Y.; Lee, B. Y. Fitoterapia 2012, 83, 1628-1635.   DOI
8 Aisa, Y.; Miyakawa, Y.; Nakazato, T.; Shibata, H.; Saito, K.; Ikeda, Y.; Kizaki, M. Am. J. Hematol. 2005, 78, 7-14.   DOI
9 Portt, L.; Norman, G.; Clapp, C.; Greenwood, M.; Greenwood, M. T. Biochim. Biophys. Acta 2011, 1813, 238-259.   DOI
10 Igney, F. H.; Krammer, P. H. Nat. Rev. Cancer 2002, 2, 277-288.   DOI
11 Martinvalet, D.; Zhu, P.; Lieberman, J. Immunity 2005, 22, 355-370.   DOI
12 Adams, J. M.; Cory, S. Science 1998, 281, 1322-1326.   DOI
13 Green, D. R.; Reed, J. C. Science 1998, 281, 1309-1312.   DOI
14 Park, H. Y.; Kim, G. Y.; Kwon, T. K.; Hwang, H. J.; Kim, N. D.; Yoo, Y. H.; Choi, Y. H. Mutat. Res. 2013, 751, 101-108.   DOI
15 Dalla Via, L.; Garcia-Argaez, A. N.; Martinez-Vazquez, M.; Grancara, S.; Martinis, P.; Toninello, A. Curr. Pharm. Des. 2014, 20, 223-244.   DOI
16 Ryu, M. J.; Chung, H. S. Mol. Med. Rep. 2016, 14, 3255-3260.   DOI
17 Visagie, M. H.; Joubert, A. M. Mol. Cell Biochem. 2011, 357, 343-352.   DOI
18 Ramyaa, P.; Krishnaswamy, R.; Padma, V. V. Biochim. Biophys. Acta 2014, 1840, 681-692.   DOI
19 Yu, H. Y.; Kim, S. O.; Jin, C. Y.; Kim, G. Y.; Kim, W. J.; Yoo, Y. H.; Choi, Y. H. Biomol. Ther. (Seoul) 2014, 22, 184-192.   DOI
20 Guon, T. E.; Chung, H. S. Oncol. Lett. 2016, 11, 2463-2470.   DOI
21 Tripathi, P.; Chandra, M.; Misra, M. K. Indian J. Clin. Biochem. 2010, 25, 302-306.   DOI
22 Armstrong, J. S. Br. J. Pharmacol. 2007, 151, 1154-1165.   DOI
23 Kim, E. K.; Choi, E. J. Arch. Toxicol. 2015, 89, 867-882.   DOI
24 Kumar, V.; Abbas, A. K.; Fausto, N.; Aster, J. C. Robins and Cotran: Pathologic Basis and Disease. 8 ed; Elsevier : Philadelphia, 2010, pp 25-32.
25 Lee, S. H.; Meng, X. W.; Flatten, K. S.; Loegering, D. A.; Kaufmann, S. H. Cell Death Differ. 2013, 20, 64-76.   DOI
26 Darbre, P. D.; Harvey, P. W. J. Appl. Toxicol. 2014, 34, 925-938.   DOI
27 Errami, Y.; Naura, A. S.; Kim, H.; Ju, J.; Suzuki, Y.; El-Bahrawy, A. H.; Ghonim, M. A.; Hemeida, R. A.; Mansy, M. S.; Zhang, J.; Xu, M.; Smulson, M. E.; Brim, H.; Boulares, A. H. J. Biol. Chem. 2013, 288, 3460-3468.   DOI
28 Ning, Y. B.; Du, Z. Q. Cell Biol. Int. 2015, 39, 577-583.   DOI
29 Matsumoto, T.; Tabata, K.; Suzuki, T. Biol. Pharm. Bull. 2014, 37, 633-641.   DOI
30 Gong, X.; Fan, G.; Wang, W.; Wang, G. Cell. Physiol. Biochem. 2014, 34, 2245-2255.   DOI
31 Reed, J. C. Semin. Hematol. 1997, 34, 9-19.
32 Li, P.; Nijhawan, D.; Budihardjo, I.; Srinivasula, S. M.; Ahmad, M.; Alnemri, E. S.; Wang, X. Cell 1997, 91, 479-489.   DOI
33 Acehan, D.; Jiang, X.; Morgan, D. G.; Heuser, J. E.; Wang, X.; Akey, C. W. Mol. Cell. 2002, 9, 423-432.   DOI
34 Shan, H.; Yan, R.; Diao, J.; Lin, L.; Wang, S.; Zhang, M.; Zhang, R.; Wei. J. J. Trace Elem. Med. Biol. 2015, 31, 85-91.   DOI
35 Zhang, Z.; Teruya, K.; Eto, H.; Shirahata, S. PLoS One 2011, 6, e27441.   DOI
36 Yang, L.; Wang, P.; Wang, H.; Li, Q.; Teng, H.; Liu, Z.; Yanq, W.; Hou, L.; Zou, X. Mar. Drugs 2013, 11, 1961-1976.   DOI
37 Ahn, J. H.; Yang, Y. I.; Lee, K. T.; Choi, J. H. J. Cancer Res. Clin. Oncol. 2015, 141, 255-268.   DOI
38 de Andrea, C. E.; Zhu, J. F.; Jin, H.; Bovee, J. V. M. G.; Jones, K. B. J. Pathol. 2015, 236, 210-218.   DOI
39 Al-Sheddi, E. S.; Al-Oqail, M. M.; Saquib, Q.; Siddiqui, M. A.; Musarrat, J.; Al-Khedhairy. A. A.; Farshori, N. N. Molecules 2015, 20, 8181-8197.   DOI
40 Nagappan, A.; Park, K. I.; Park, H. S.; Kim, J. A.; Hong, G. E.; Kang, S. R.; Lee, D. H.; Kim, E. H.; Lee, W. S.; Won, C. K.; Kim, G. S. Food Chem. 2012, 135, 1920-1928.   DOI
41 Trebinska, A.; Högstrand, K.; Grandien, A.; Grzybowska, E. A.; Fadeel, B. FEBS Lett. 2014, 588, 2921-2927.   DOI
42 Patankar, M. S.; Oehninger, S.; Barnett, T.; Williams, R. L.; Clark, G. F. J. Biol. Chem. 1993, 268, 21770-21776.   DOI
43 Kon, A.; Yuan, B.; Hanazawa, T.; Kikuchi, H.; Sato, M.; Furutani, R.; Takagi, N.; Toyoda, H. Oncol. Rep. 2013, 30, 1965-1970.   DOI
44 Sun, L.; Fan, H.; Yang, L.; Shi, L.; Liu, Y. Molecules 2015, 20, 3758-3775.   DOI
45 Liu, X.; Li, W.; Geng, S.; Meng, Q. G.; Bi, Z. G. Mol. Med. Rep. 2015, 12, 1183-1188.   DOI