Browse > Article
http://dx.doi.org/10.20307/nps.2019.25.2.115

Chemical Constituents from Solenostemma argel and their Cholinesterase Inhibitory Activity  

Demmak, Rym Gouta (Laboratoire de Biochimie Appliquee, Departement des Sciences de la Nature et de la Vie, Universite Freres Mentouri-Constantine)
Bordage, Simon (Laboratoire de Pharmacognosie, Univ. Lille)
Bensegueni, Abederrahmane (Laboratoire de Biochimie Appliquee, Departement des Sciences de la Nature et de la Vie, Universite Freres Mentouri-Constantine)
Boutaghane, Naima (Laboratoire d'Obtention des Substances Therapeutiques (LOST), Campus Chaabet-Ersas, Departement de chimie, Universite des Freres Mentouri-Constantine)
Hennebelle, Thierry (Laboratoire de Pharmacognosie, Univ. Lille)
Mokrani, El Hassen (Laboratoire de Biochimie Appliquee, Departement des Sciences de la Nature et de la Vie, Universite Freres Mentouri-Constantine)
Sahpaz, Sevser (Laboratoire de Pharmacognosie, Univ. Lille)
Publication Information
Natural Product Sciences / v.25, no.2, 2019 , pp. 115-121 More about this Journal
Abstract
Alzheimer's disease is a chronic neurodegenerative disorder with no curative treatment. The commercially available drugs, which target acetylcholinesterase, are not satisfactory. The aim of this study was to investigate the cholinesterase inhibitory activity of Solenostemma argel aerial part. Eight compounds were isolated and identified by NMR: kaempferol-3-O-glucopyranoside (1), kaempferol (2), kaempferol-3-glucopyranosyl($1{\rightarrow}6$)rhamnopyranose (3) p-hydroxybenzoic acid (4), dehydrovomifoliol (5), 14,15-dihydroxypregn-4-ene-3,20-dione (6), 14,15-dihydroxy-pregn-4-ene-3,20-dione-$15{\beta}$-D-glucopyranoside (7) and solargin I (8). Two of them (compounds 2 and 3) could inhibit over 50 % of butyrylcholinesterase activity at $100{\mu}M$. Compound (2) displayed the highest inhibitory effect against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with a slight selectivity towards the latter. Molecular docking studies supported the in vitro results and revealed that (2) had made several hydrogen and ${\pi}-{\pi}$ stacking interactions which could explain the compound potency to inhibit AChE and BChE.
Keywords
Alzheimer's disease; Cholinesterase; Molecular docking; Solenostemma argel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lobbens, E. S.; Vissing, K. J.; Jorgensen, L.; van de Weert, M.; Jager, A. K. J. Ethnopharmacol. 2017, 200, 66-73.   DOI
2 Wei, Y.; Xie, Q.; Fisher, D.; Sutherland, I. A. J. Chromatogr. A. 2011, 1218, 6206-6211.   DOI
3 Park, J. S.; Rho, H. S.; Kim, D. H.; Chang, I. S. J. Agric. Food Chem. 2006, 54, 2951-2956.   DOI
4 Budzianowski, J. Phytochemistry 1990, 29, 3643-3647.   DOI
5 Cho, J. Y.; Moon, J. H.; Seong, K. Y.; Park K. H. Biosci. Biotechnol. Biochem. 1998, 62, 2273-2276.   DOI
6 Schievano, E.; Stocchero, M.; Morelato, E.; Facchin, C.; Mammi, S. Metabolomics 2012, 8, 679-690.   DOI
7 Kamel, M. S. Phytochemistry 2003, 62, 1247-1250.   DOI
8 Jung, H. A.; Jung, Y. J.; Hyun, S. K.; Min, B. S.; Kim, D. W.; Jung, J. H.; Choi, J. S. Biol. Pharm. Bull. 2010, 33, 267-272.   DOI
9 Fang, Z.; Jeong, S. Y.; Jung, H. A.; Choi, J. S.; Min, B. S.; Woo, M. H. Chem. Pharm. Bull. 2010, 58, 1236-1239.   DOI
10 Darvesh, S. Curr. Alzheimer Res. 2016, 13, 1173-1177.   DOI
11 Mehta, M.; Adem, A.;Sabbagh, M. Int. J. Alzheimers Dis. 2012, 2012, 728983.
12 Guo, A. J. Y.; Xie, H. Q.; Choi, R. C. Y.; Zheng, K. Y. Z.; Bi, C. W. C.; Xu, S. L.; Dong, T. T. X.; Tsim, K. W. K. Chem. Biol. Interact. 2010, 187, 246-248.   DOI
13 Bahrani, H.; Mohamad, J.; Paydar, M. J.; Rothan, H. A. Curr. Alzheimer Res. 2014, 11, 206-214.   DOI
14 Wan Othman, W. N. N.; Liew, S. Y.; Khaw, K. Y.; Murugaiyah, V.; Litaudon, M.; Awang, K. Bioorg. Med. Chem. 2016, 24, 4464-4469.   DOI
15 Kandiah, N.; Pai, M. C.; Senanarong, V.; Looi, I.; Ampil, E.; Park, K.W.; Karanam, A. K.; Christopher, S. Clin. Interv. Aging. 2017, 12, 697-707.   DOI
16 Machado, L. P.; Carvalho, L. R.; Young, M. C. M.; Cardoso-Lopes, E. M.; Centeno, D. C.; Zambotti-Villela, L.; Colepicolo, P.; Yokoya, N. S. Rev. Bras. Farmacogn. 2015, 25, 657-662.   DOI
17 Orhan, I. E.; Orhan, G.; Gurkas, E. Mini Rev. Med. Chem. 2011, 11, 836-842.   DOI
18 Zemek, F.; Drtinova, L.; Nepovimova, E.; Sepsova, V.; Korabecny, J.; Klimes, J.; Kuca, K. Expert Opin. Drug Saf. 2014, 13, 759-774.   DOI
19 Lee, K. Y.; Sung, S. H.; Kim, Y. C. Helv. Chim. Acta. 2003, 86, 474-483.   DOI
20 Kamel, M. S.; Ohtani, K.; Hasanain, H. A.; Mohamed, M. H.; Kasai, R.; Yamasaki, K. Phytochemistry 2000, 53, 937-940.   DOI
21 Ounaissia, K.; Pertuit, D.; Mitaine-Offer, A. C.; Miyamoto, T.; Tanaka, C.; Delemasure, S.; Dutartre, P.; Smati, D.; Lacaille-Dubois, M. A. Fitoterapia 2016, 114, 98-104.   DOI
22 Shafek, R. E.; Shafik, N. H.; Michael, H. N. Asian J. Plant Sci. 2012, 11, 143-147.   DOI
23 Yang, Z.; Zhang, X.; Duan, D.; Song, Z.; Yang, M.; Li, S. J. Sep. Sci. 2009, 32, 3257-3259.   DOI
24 Plaza, A.; Perrone, A.; Balestrieri, C.; Balestrieri, M. L.; Bifulco, G.; Carbone, V.; Hamed, A.; Pizza, C.; Piacente, S. Tetrahedron 2005, 61,7470-7480.   DOI
25 Ibrahim, M. E.; Ahmed, S. S.; El-Sawi, S. A.; Khalid, K. A. J. Essent. Oil Bear. Pl. 2014, 17, 629-632.   DOI
26 Di Giovanni, S.; Borloz, A.; Urbain, A.; Marston, A.; Hostettmann, K.; Carrupt, P. A.; Reist, M. Eur. J. Pharm. Sci. 2008, 33, 109-119.   DOI
27 Cheung, J.; Gary, E. N.; Shiomi, K.; Rosenberry, T. L. ACS Med Chem Lett. 2013, 4, 1091-1096.   DOI
28 Wandhammer, M.; Carletti, E.; Van Der Schans, M.; Gillon, E.; Nicolet, Y.; Masson, P.; Goeldner, M.; Noort, D., Nachon, F. J. Biol.Chem. 2011, 286, 16783-16789.   DOI
29 Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996, 14, 33-38.   DOI
30 Schrodinger, L. Schrodinger Release 2015-1: Maestro (version 10.1). 2015, N. Y.