Browse > Article

Phenolic Compounds from Caesalpinia sappan and Their Inhibitory Effects on LPS-induced NO Production in RAW264.7 Cells  

Min, Byung Sun (College of Pharmacy, Catholic University of Daegu)
Cuong, To Dao (College of Pharmacy, Catholic University of Daegu)
Publication Information
Natural Product Sciences / v.19, no.3, 2013 , pp. 201-205 More about this Journal
Abstract
Thirteen phenolic compounds, 1,4-dimethoxybenzene (1), 3,4-dihydroxybenzaldehyde (2), (2E)-3-(4-hydroxy-3,5-dimethoxyphenyl)acrylaldehyde (3), 3,7-dihydroxy-4H-chromen-4-one (4), 2,3-dihydroxy-1-(3,4-dihydroxyphenyl)propan-1-one (5), 4-hydroxy-3-methoxybenzoic acid (6), 4-hydroxy-3,5-dimethoxybenzoic acid (7), methyl 3,4-dihydroxybenzoate (8), 4-hydroxy-3,5-dimethoxybenzaldehyde (9), 3,4-dihydroxybenzoic acid (10), 3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)propan-1-one (11), 2,4,6-trihydroxybenzaldehyde (12) and benzene-1,2,4-triol (13) were isolated from the heartwood of Caesalpinia sappan. Their anti-inflammatory activity was evaluated against LPS-induced NO production in macrophage RAW264.7 cells. Among them, compounds 3 and 8 showed strong inhibitory activities toward the LPS-induced NO production in macrophage RAW264.7 cells with $IC_{50}$ values of 14.5 and 21.5 ${\mu}M$, respectively.
Keywords
Caesalpinia sappan; Leguminosae; Phenolic; Anti-inflammatory activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hu, C.M., Kang, J.J., Lee, C.C., Li, C.H., Liao, J.W., and Cheng, Y.W., Induction of vasorelaxation through activation of nitric oxide syntheses in endothelial cells by brazilin. Eur. J. Pharmacol. 468, 37- 45 (2003).   DOI
2 Hu, C.M., Liu, Y.H., Cheah, K.P., Li, J.S, Lam, C.S., Yu, W.Y., and Choy, C.S., Heme oxygenase-1 mediates the inhibitory actions of brazilin in RAW264.7 macrophages stimulated with lipopolysaccharide. J. Ethnopharmacol. 121, 79-85 (2009).   DOI
3 Lai, W.C., Wang, H.C., Chen, G.Y., Yang, J.C., Korinek, M., Hsieh, C.J., Noraki, H., Hayashi, K.I., Wu, C.C., Wu, Y.C., and Chang, F.R., Using the pER8 : GUS Reporter System to Screen for Phytoestrogens from Caesalpinia sappan. J. Nat. Prod. 74, 1698-1706 (2011).   DOI
4 Lee, M.J., Lee, H.S., Jung, H.J., Lee, C.S., Kim, J.E., Moon, H.I., and Park, W.H., Caesalpinia sappan L. ameliorates hypercholesterolemia in C57BL/6 mice and suppresses inflammatory responses in human umbilical vein endothelial cells (HUVECs) by antioxidant mechanism. Immunopharmacol. Immunotoxicol. 32, 671-679 (2010).   DOI
5 Li, Y., He, X., Liu, Z., Huang, Y., Lan, Y., Wang, A., and Wang, Y., Chemical constituents of flowers from Polygonum orientale. Zhongguo Zhong Yao Za Zhi 34, 2613-2615 (2009).
6 Liu, A.L., Shu, S.H., Qin, H.L., Lee, S.M., Wang, Y.T., and Du, G.H., In vitro anti-influenza viral activities of constituents from Caesalpinia sappan. Planta Med. 75, 337-339 (2009).   DOI
7 Murakami, A. and Ohigashi, H., Targeting NOX, iNOS and COX-2 in inflammatory cells: chemoprevention using food photochemical. Int. J. Cancer 121, 2357-2363 (2007).   DOI
8 Liya L. and Navindra P.S., Further Investigation into Maple Syrup Yields 3 New Lignans, a New Phenylpropanoid, and 26 Other Phytochemicals. J. Agric. Food Chem. 59, 7708-7716 (2011).   DOI
9 Ma, Q.H., Shi, X.F., Fan, B., and Liu, D.Y., Study on the chemical constituents from Patrinia scabra. Zhong Yao Cai 35, 1257-1259 (2012).
10 Min, B.S., Cuong, T.D., Hung, T.M., Min, B.K., Shin, B.S., and Woo, M. H., Compounds from the heartwood of Caesalpinia sappan and their anti-inflammatory activity. Bioorg. Med. Chem. Lett. 22, 7436-7439 (2012).   DOI
11 Nagai, M., Nagumo, S., Eguchi, I., Lee, S.M., and Suzuki, T., Sappanchalcone from Caesalpinia sappan L., the proposed biosynthetic precursor of brazilin. Yakugaku Zasshi 104, 935-938 (1984).   DOI
12 Oh, S.R., Kim, D.S., Lee, I.S., Jung, K.Y., Lee, J.J., and Lee, H.K., Anticomplementary activity of constituents from the heartwood of Caesalpinia sappan. Planta Med. 64, 456-458 (1998).   DOI
13 Peng, W., Han, T., Liu, Q., and Qin, L., Chemical constituents from aerial part of Atractylodes macrocephala. Zhongguo Zhong Yao Za Zhi 36, 578-581 (2011).
14 Qu, G., Yue, X., An, F., Dai, S., Li, G., and Li, B., Chemical constituents contained in Salvia castanea. Zhongguo Zhong Yao Za Zhi. 37, 1985- 1989 (2012).
15 Saitoh, T., Sakashita, S., Nakata, H., Shimokawa, T., Kinjo, J.E., Yamahara, J., Yamasaki, M., and Nohara, T., 3-Benzylchroman derivatives related to brazilin from Sappan Lignum. Chem. Pharm. Bull. 34, 2506-3547 (1986).   DOI
16 Schottenfild, D. and Beebe-Dimmer, J., Chronic inflammation: A common and important factor in the pathogenesis of Neoplasia. Cancer J. Clin. 56, 69-83 (2006).   DOI
17 Stalin, T. and Rajendiran, N., A study on the spectroscopy and photophysics of 4-hydroxy-3-methoxybenzoic acid in different solvents, pH and $\beta$-cyclodextrin. J. Mol. Struc. 794, 35-45 (2006).   DOI
18 Shen, J., Zhang, H., Lin, H., Su, H., Xing, D., and Du, L., Brazilein protects the brain against focal cerebral ischemia reperfusion injury correlating to inflammatory response suppression. Eur. J. Pharmacol. 558, 88-95 (2007).   DOI
19 Shimokawa, T., Kinjo, J., Yamahara, J., Yamasaki, M., and Nohara, T., Two novel aromatic compounds from Caesalpinia sappan. Chem. Pharm. Bull. 33, 3545-3547 (1985).   DOI
20 Stalin, T. and Rajendiran, N., Effects of solvent, pH and beta-cyclodextrin on the photophysical properties of 4-hydroxy-3,5-dimethoxybenzaldehyde: intramolecular charge transfer associated with hydrogen bonding effect. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 61, 3087-3096 (2005).   DOI
21 Stephane, B.B., Roland, B., and Alain, C., Photochemistry of Methoxyhydroquinone and Methoxy-p-benzoquinone in Solution Related to the Photo Yellowing of the Lignocellulosics. Photochem Photobiol. 74, 542-548 (2001).   DOI
22 Studer, R., Jaffurs, D., Stefanovic-Racic, M., Robbins, P.D., and Evans, C.H., Nitric oxide in osteoarthritis. Osteoarthritis Cartilage 7, 377- 379 (1999).   DOI
23 Vane, J.R., Mitchell, J.A., Appleton, I., Tomlinson, A., Bishop-Bailey, D., Croxtall, J., and Willoughby, D.A., Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proc. Nad. Acad. Sci. 91, 2046-2050 (1994).   DOI
24 Washiyama, M., Sasaki, Y., Hosokawa, T., and Nagumo, S., Antiinflammatory constituents of Sappan Lignum. Biol. Pharm. Bull. 32, 941-944 (2009).   DOI
25 Yodsaoue, O., Cheenpracha, S., Karalai, C., Ponglimanont, C., and Tewtrakul, S., Anti-allergic activity of principles from the roots and heartwood of Caesalpinia sappan on antigen-induced betahexosaminidase release. Phytother. Res. 23, 1028-1031 (2009).   DOI
26 Bitzer, C., Brasse, G., Dettner, K., and Schulz, S., Benzoic acid derivatives in a hypogastrurid collembolan: temperature-dependent formation and biological significance as deterrents. J. Chem. Ecol. 30, 1591-602 (2004).   DOI
27 Zedler, S. and Faist, E., The impact of endogenous triggers on traumaassociated inflammation. Curr. Opin. Crit. Care. 12, 595-601 (2006).   DOI
28 Ahn, K.S., Noh, E.J., Zhao, H.L., Jung, S.H., Kang, S.S., and Kim, Y.S., Inhibition of inducible nitric oxide synthase and cyclooxygenase II by Platycodon grandiflorum saponins via suppression of nuclear factorkB activation in RAW 264.7 cells. Life Sci. 76, 2315-2328 (2005).   DOI
29 Ana, C.M.M., Adam, C.G., Humberto, G.P., and Jesus, C.M., Development and validation of a High Performance Liquid Chromatography-Diode Array Detection method for the determination of aging markers in tequila. J. Chromatograph. A. 1213, 218-223 (2008).   DOI
30 Bae, I.K., Min, H.Y., Han, A.R., Seo, E.K., and Lee, S.K., Suppression of lipopolysaccharide-induced expression of inducible nitric oxide synthase by brazilin in RAW 264.7 macrophage cells. Eur. J. Pharmacol. 513, 237-242 (2005).   DOI
31 Cuong, T.D., Hung, T.M., Kim, J.C., Kim, E.H., Woo, M.H., Choi, J.S., Lee, J.H., and Min, B.S., Phenolic Compounds from Caesalpinia sappan Heartwood and Their Anti-inflammaory Activity. J. Nat. Prod. 75, 2069-2075 (2012).   DOI
32 Friedman, M., Henika, P.R., and Mandrell, R.E., Antibacterial activities of phenolic benzaldehydes and benzoic acids against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J. Food Prot. 66, 1811-1821 (2003).   DOI
33 Jan, K. C., Ho, C.T., and Hwang, L.S., Elimination and metabolism of sesamol, a bioactive compound in sesame oil, in rats. Mol. Nutr. Food Res. 53, 36-43 (2009).   DOI
34 Fuke, C., Yamahara, J., Shimokawa, T., Kinjo, J., Tomimatsu, T., and Nohara, T., Two aromatic compounds related to brazilin from Caesalpinia sappan. Phytochemistry 24, 2403-2405 (1985).   DOI