Browse > Article

Screening of ${\alpha}$-Glucosidase Inhibitory Activity of Vietnamese Medicinal Plants : Isolation of Active Principles from Oroxylum indicum  

Nguyen, Mai Thanh Thi (Faculty of Chemistry, University of Science, Vietnam National University)
Nguyen, Nhan Trung (Faculty of Chemistry, University of Science, Vietnam National University)
Nguyen, Hai Xuan (Faculty of Chemistry, University of Science, Vietnam National University)
Huynh, Thuy Nghiem Ngoc (Faculty of Chemistry, University of Science, Vietnam National University)
Min, Byung-Sun (College of Pharmacy, Catholic University of Daegu)
Publication Information
Natural Product Sciences / v.18, no.1, 2012 , pp. 47-51 More about this Journal
Abstract
Among 38 Vietnamese medicinal plant extracts investigated for their ${\alpha}$-glucosidase inhibitory activity, 35 extracts showed $IC_{50}$ values below $250{\mu}g/mL$. The MeOH extracts of the heartwood of Oroxylum indicum, the seeds of Caesalpinia sappan, and the fruits of Xanthium strumarium exhibited strong ${\alpha}$-glucosidase inhibitory activity with $IC_{50}$ values less than $50{\mu}g/mL$. Fractionation of the MeOH extract of the heartwood of O. indicum led to the isolation of oroxylin A (1), oroxyloside (2), hispidulin (3), apigenin (4), ficusal (5), balanophonin (6), 2- (1-hydroxymethylethyl)-4H,9H-naphtho[2,3-b]furan-4,9-dione (7), salicylic acid (8), p-hydroxybenzoic acid (9), protocatechuic acid (10), isovanillin (11), and ${\beta}$-hydroxypropiovanillon (12). Compounds 1 - 3, 5, 6, 8, 10, and 12 showed more potent activities, with $IC_{50}$ values ranging from 2.13 to $133.51{\mu}M$, than a positive control acabose ($IC_{50}$, $241.85{\mu}M$). The kinetic study indicated that oroxyloside (2) displayed mixed-type inhibition with inhibition constant (Ki) was $3.56{\mu}M$.
Keywords
Vietnamese medicinal plants; ${\alpha}$-glucosidase inhibitory activity; Oroxylum indicum;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Baron, A.D., Postprandial hyperglycemia and ${\alpha}$-glucosidase inhibitors. Diabetes Research and Clinical Practice. 40, 51-55 (1998).
2 Harborne, J. B., and Mabry, T. J., The flavonoids: advances in research (p 60). Cambridge: Cambridge University Press (1982).
3 Haruna, M., Koube, T., Ito, K., and Murata, H., Balanophonin, a new neolignan from Balanophora japonica Makino. Chemical & Pharmaceutical Bulletin, 30, 1525-1527 (1982).
4 Holman, R.R., Cull, C.A., and Turner, R.C., A randomized double-blind trial of acarbose in type 2 diabetes shows improved glycemic control over 3 years. Diabetes Care., 22, 960-964 (1999).
5 Hsu, F.L., Chen, Y.C., and Cheng, J.T., Caffeic acid as active principle from the fruit of Xanthium strumarium to lower plasma glucose in diabetic rats. Planta Medica, 66, 228-230 (2000).
6 Jadrijevic, M., Takac, M., and Vikic, T.D., FT-IR and NMR spectroscopic studies of salicylic acid derivatives. II. Comparision of 2-hydroxy- and 2,4- and 2,5-dihydroxy derivatives. Acta Pharmacceutica, 54, 177-191 (2004).
7 Kim, K.Y., Nam, K.A., Kurihara, H., and Kim, S.M., Potent ${\alpha}$- glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry, 69, 2820-2825 (2008).
8 Kizu, H., Habe, S., Ishida, M., and Tomimori, T., Studies on the Nepalese crude drugs. On the naphthalene related compounds from the root bark of Oroxylum indicum Vent. Yakagaku Zasshi, 114, 492-513 (1994).
9 Lee, S.S., Wang, J.S., and Chen, K.C.S., Chemical constituents from the roots of Zizyphus jujuba Mill. Var. splnosa. Journal of the Chinese Chemical Society, 42, 77-82 (1995).
10 Li, Y.C. and Kuo, Y.H., Four new compounds, ficusal, ficusesquilignan A, B, and ficusilide diacetate from the heartwood of Ficus microcarpa. Chemical & Pharmaceutical Bulletin, 48, 1862-1865 (2000).
11 Luo, J.R., Jiang, H.E., Zhao, Y.X., Zhou, J., and Qian, J.F., Components of the heartwood of Populus euphratica from an ancient tomb. Chemistry of Natural Compounds. 44, 6-9 (2008).
12 Marques, M.R., Stuker, C., Kichik, N., Tarrago, T., Giralt, E., Morel, F.F., and Dalcol, I.I., Flavonoids with prolyl oligopeptidase inhibitory activity isolated from Scutellaria racemosa Pers. Fitoterapia. 81, 552-556 (2010).
13 Ryu, J., Son, D., Kang, J., Kim, H.S., Kim, B.K., and Lee, S., A benzenoid from the stem of Acanthopanax senticosus. Archives of Pharmacal Research. 27, 912-914 (2004).
14 Tewari, N., Tiwari, V.K., Mishra, R.C., Tripathi, R.P., Srivastava, A.K., Ahmad, R., Srivastava, R., and Srivastava, B.S. Synthesis and bioevaluation glycosyl ureas as alpha-glucosidase inhibitors and their effect on mycobacterium. Bioorganic & Medicinal Chemistry. 11, 2911-2922 (2003).
15 Vo, V.C., An Giang Medicinal Plants (p 368). An Giang: Science & Technology Publisher (1991).
16 Yodsaoue, O., Cheenpracha, S., Karalai, C., Ponglimanont, C., Chantrapromma, S., Fun, H. K., and Kanjana-Opas, A. Phanginin AK, diterpenoids from the seeds of Caesalpinia sappan Linn. Phytochemistry. 69, 1242-1249 (2008).
17 Yoon, J.H., Lim, H.J., Lee, H.J., Kim, H.D., Jeon, R., and Ryu, J.H. Inhibition of lipopolysaccharide-induced inducible nitric oxide synthase and cyclooxygenase-2 expression by xanthanolides isolated from Xanthium strumarium. Bioorganic & Medicinal Chemistry Letters, 18, 2179-2182 (2008).
18 Zijia, Z., Liping, L., Jeffrey, M., Tao, M., and Zhengtao, W., Antioxidant phenolic compounds from walnut kernels (Juglans regia L.). Food Chemistry, 113, 160-165 (2009).
19 Zimmet, P., Alberti, K., and Shaw, J., Global and societal implications of the diabetes epidemic. Nature, 414, 782-787 (2001).