Browse > Article

Cell Cycle Regulation and Antioxidant Activity of Psammaplin A, A Natural Phenolic Compound from Marine Sponge  

Jiang, Ya-Hong (School of Pharmaceutical Engineering, Shenyang Pharmaceutical University)
Ryu, Seung-Hee (Department of Chemistry and Biohealth Products Research Center, Inje University)
Ahn, Eun-Young (Department of Chemistry and Biohealth Products Research Center, Inje University)
You, Song (School of Pharmaceutical Engineering, Shenyang Pharmaceutical University)
Lee, Burm-Jong (Department of Chemistry and Biohealth Products Research Center, Inje University)
Jung, Jee-H (College of Pharmacy, Pusan National University)
Kim, Dong-Kyoo (Department of Chemistry and Biohealth Products Research Center, Inje University)
Publication Information
Natural Product Sciences / v.10, no.6, 2004 , pp. 277-283 More about this Journal
Abstract
Psammaplin A (PSA), a naturally occurring biophenolic compound has been demonstrated to deliver significant cytotoxicity to many cancer cell lines. In this article, we investigated the effect of PSA on cell cycle progression of lung cancer cells (A549). It was found that PSA could slightly perturb the cell cycle progression of A549 cells and lead to the cell cycle arrest at G2/M phase, indicating PSA might disturb the mitosis process of A549 cells. In addition, inspired by the two phenolic groups in the structure of PSA, the antioxidant activity of it has been evaluated. Although PSA was weak in scavenging the stable free radical 1,1-diphenyl-2-picrylhyrazyl (DPPH), it showed stronger ABTS radical scavenging activity than ascorbic acid in TEAC assay. Furthermore, it was found that PSA could effectively prevent DNA strand scission induced by oxidative stress. These results suggest that PSA have both cell cycle regulation and antioxidant activities. Herein, we suggest that PSA would be a very interesting and promising candidate to be developed as a multi-function drug.
Keywords
psammaplin A; cell cycle arrest; antioxidant; radical scavenger;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
1 Decker, E.A, The role of phenolics, conjugated linoleic acid, carnosine and pyrroloquinoline quinone as nonessential dietary antioxidants. Nutr: Rev. 53, 49-58 (1995)   DOI   PUBMED   ScienceOn
2 Keum, Y.S., Park, K.K, Lee, lM., Chun, KS., Park, J.H., Lee, S.K, Kwon, H., and Surh, Y.J., Antioxidant and anti-tumor promoting activities of the methanol extract of heat-processed ginseng. Cancer Lett. 150, 41-48 (2000)   DOI   ScienceOn
3 Lien, E.J., Ren, S., Bui, H.H., and Wang, R., Quantitative structure-activity relationship analysis of phenolic antioxidants. Free Radic. BioI. Med. 26, 285-294 (1999)   DOI   ScienceOn
4 Nicolaou, K.C., Houghes, R., Pfefferkorn, J.A, Barluenga, S., and Roeker, A,J., Combinatorial synthesis through disulfide exchange: discovery of potent psanunaplin A type antibacterial agents active against Methicillin-Resistant Staphylococcus aureus (MRSA). Chem. Eur. J. 7,4280-4295 (2001b)   DOI   ScienceOn
5 Jiang, Y.H., Ahn, E.Y, Ryu, S.H., Kim, D.K, Park, J.S., Yoon, H.J., You, S., Lee, B.J., Lee, D.S., and Jung, J.H., Cytotoxicity of psammaplin A from a two-sponge association may correlate with the inhibition of DNA replication. BMC Cancer 4, 70 (2004)   DOI   PUBMED   ScienceOn
6 Briviba, K and Sies, H., Nonenzymatic antioxidant defense systems, in Frei, B. (eds.), Natural Antioxidants in Human Health and Disease, Academic Press, New York, 1994, pp. 107-128
7 Nicolaou, KC., Houghes, R., Pfefferkorn, J.A, and Barluenga, S., Optimization and mechanistic studies of psammaplin A type antibacterial agents active against methicillin-resistant Staphy lococcus aureus (MRSA). Chem. Eur. J. 7, 4296-4310 (2001a)   DOI   ScienceOn
8 Clement, M.V., Hirpara, J.L., Chawdhury, S.H., and Pervaiz, S., Chemopreventive agent resveratrol, a natural product derived from grapes, triggers CD95 signaling-dependent apoptosis in human tumor cells. Blood. 92, 996-1002 (1998)
9 Blois, M.S., Antioxidant determinations by the use of a stable free radical. Nature 181, 1199-1200 (1958)   DOI   ScienceOn
10 Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C., Antioxidant activity applying an improved ABTS radical cation decolorized assay. Free Radic. Biol. Med. 26, 1231-1237 (1999)   DOI   ScienceOn
11 Hideyuki, T., Munetaka, I., Fumio, O., Kazumi, S., Tomoyuki, H., Keiji, S., and Masami W., A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal. Cornrnun. 36, 47-50 (1999)   DOI   ScienceOn
12 Sanchez-Moreno, C., Larrauri, J.A., and Saura-Calixto, F, Free radical scavenging capacity and inhibition of lipid oxidation of wines, grape juices and related polyphenolic constituents. Food Res. Int. 32, 407-412 (1999)   DOI   ScienceOn
13 Arabshahi, L. and Schmitz, F.J., Brominated tyrosine metabolites from an unidentified sponge. J. Org. Chern. 52, 3584-3586 (1987)   DOI
14 Borek, C., Dietary antioxidants and human cancer. Integr Cancer Ther. 3, 333-341 (2004)   DOI   PUBMED   ScienceOn
15 Cerutti, P, Oxy-radicals and cancer. Lancet. 344, 862-863 (1994)   DOI   ScienceOn
16 Adams, J.D. and Odunze, I.N., Oxygen free radicals and Parkinson disease. Free Radie. BioI. Med. 10,161-169 (1991)   DOI   ScienceOn
17 Block, K.I, Antioxidants and cancer therapy: Furthering the debate. Integr Cancer Ther. 3, 342-348 (2004)   DOI   PUBMED   ScienceOn
18 Pina, I.C., Gautschi J.T., Wang, G.Y.S., Sanders, M.L., Schmitz, FJ., France, D., Kennon, S.C., Sarnbucetti, L.C., Remiszewski, S.W., Perez, L.B., Bair, K.W., and Crews, P, Psammaplins from the sponge pseudocerutina purpurea: Inhibition of both histone deacetylase and DNA methyltransferase. J. Org. Chern. 68, 3866-3873 (2003)   DOI   ScienceOn
19 Mitchell, J.H., Gardner, PT., McPhail, D.B., Morrice, PC., Collins, AR., and Duthie, G.G., Antioxidant efficacy of phytoestrogens in chemical and biological model system. Arch. Biochern. Biophys. 360,142-148 (1998)   DOI   ScienceOn
20 Cottelle, N., Bernier, J.L., Catteau, J.P., Pommery, P., Wallet, J.C., and Gadou, E.M., Antioxidant propelties of hydroxyl-flavones. Free Radic. BioI. Med. 20, 35-43 (1996)   DOI   ScienceOn
21 Kim, D., Lee, I.S., Jung, J.H., and Yang, S.H., Psammaplin A, a natural bromotyrosine derivative trom a sponge, possesses the antibacterial activity against Methicillin-resistant Staphyloco ccusa ureus and the DNA gyrase-inhibitory activity. Arch. Phann. Res. 22, 25-29 (1999)   DOI   ScienceOn
22 Russo, A., Acquaviva, R., Campisi, A., Sorrenti, v., Di-Giacomo, C., Vtrgata, G., Barcellona, ML, and Vanella, A., Bioflavonoids as antiradicals, antioxidants and DNA cleavage protectors. Cell Biol. Toxicol. 16, 91-98 (2000)   DOI   PUBMED   ScienceOn
23 Stoner, G.D. and Mukhtar, H., Polyphenols as cancer chemopre ventive agents. J Cell Biochem Suppl. 22, 169-80 (1995)
24 Hertog, M.G.L., Feskens, E.J.M., Hollman, P.C.H., Katan, M.B., and Kromhout, D., Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen elderly study. Lancet. 342, 1007-1011 (1993)   DOI   ScienceOn
25 Ju, E.M., Lee, S.F., Hwang, H.J., and Kim, J.H., Antioxidant and anticancer activity of extract from Betula platyphylla var. japonica. Life Sci. 74, 1013-1026 (2004)   DOI   ScienceOn