Browse > Article

Crude Extract of Zizyphi Jujube Semen Protects Kainic Acid-induced Excitotoxicity in Cultured Rat Neuronal Cells  

Park, Jeong-Hee (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University)
Ban, Ju-Yeon (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University)
Joo, Hyun-Soo (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University)
Song, Kyung-Sik (College of Agriculture and Life-Sciences, Kyungpook National University)
Bae, Ki-Whan (College of Pharmacy, Chungnam National University)
Seong, Yeon-Hee (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University)
Publication Information
Natural Product Sciences / v.9, no.4, 2003 , pp. 249-255 More about this Journal
Abstract
Zizypus is one of the herbs widely used in Korea and China due to CNS calming effect. The present study aims to investigate the effect of the methanol extract of Zizyphi Jujube Semen (ZJS) on kainic acid (KA)-induced neurotoxicity in cultured rat cerebellar granule neuron. ZJS, over a concentration range of 0.05 to $5\;{\mu]g/ml$, inhibited KA $(500\;{\mu}M)-induced$ neuronal cell death, which was measured by a trypan blue exclusion test and a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay. Pretreatment of ZJS $(0.5\;{\mu}g/ml)$ inhibited KA$(50\;{\mu}M)$-induced elevation of cytosolic calcium concentration $([Ca^{2+}]_c)$, which was measured by a fluorescent dye, Fura 2-AM, and generation of reactive oxygen species (ROS). ZJS $(0.5\;{\mu}g/ml)$ inhibited glutamate release into medium induced by KA $(500\;{\mu}M)$, which was measured by HPLC. These results suggest that ZJS prevents KA-induced neuronal cell damage in vitro.
Keywords
Zizyphi Jujube Semen; Kainic acid; Neurotoxicity; Cerebellar granule cells;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Adzu, B., Amos, S., Dzarma, S., Wambebe, C. and Gamaniel, K., Effect of Zizzyphus spina-christi Wild aqueous extract on the central nervous system in mice. J. Ethnopharm., 79, 13-16 (2002)   DOI   ScienceOn
2 Choi, D. W., Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci. Letts., 58, 293-297 (1985)   DOI   PUBMED   ScienceOn
3 Dykens, J. A., Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated $Ca^{2+}$ and $Na^+$ : implications for neurodegeneration. J. Neurochem., 63, 584-591 (1994)   DOI   PUBMED   ScienceOn
4 Larm, J. A., Beart, P. M. and Cheung, N. S., Neurotoxin domoic acid produces cytotoxicity via kainite- and AMPA-sensitive receptors in cultured cortical neurons. Neurochem. Ini., 31, 677-682 (1997)   DOI   ScienceOn
5 Lesort, M., Esclaire, F., Yardin, C. and Hugon, J., NMDA induces apoptosis and necrosis in neuronal cultures. Increased APP immunoreactivity is linked to apoptotic cells. Neurosci. Letts., 221, 213-216 (1997)   DOI   ScienceOn
6 Nicholls, D. G. and Budd, S. L., Mitochondria and neuronal survival. Physiol. Rev., 80, 315-360 (2000)   DOI
7 Rothman, S. M. and Olney, J.W., Glutamate and the phathophysiology of hypoxic-ischemic brain damage. Ann. Neurol., 19, 105-111 (1986)   DOI   ScienceOn
8 Van Vliet, B. J., Sebben, M., Dumuis, A., Gabrion, J., Bockaert, J. and Pin, J. P., Endogenous amino acid release from cultured cerebellar neuronal cells: Effect of tetanus toxin on glutamate release. J. Neurochem., 52, 1229-1230 (1989)   DOI   PUBMED
9 Whit, R. J. and Reynolds, I. J., Mitochondrial depolarization in glutamate-stimulated neurons: an early signal specific to excitotoxic exposure. J. Neurosci., 16, 5688-5697 (1996)
10 Bondy, S. C. and Lee, D. K., Oxidative stress induced by glutamate receptor agonists. Brain Res., 610, 229-233 (1993)   DOI   ScienceOn
11 Kim, S. D., Oh, S. K., Kim, H. S. and Seong, Y. H., Inhibitory effect of fangchinoline on excitatory amino acids-induced neurotoxicity in cultured rat cerebellar granule cells. Arc. Pharm. Res., 24, 164-170 (2001)   DOI   ScienceOn
12 Regan, R. F. and Choi, D. W., The effect of NMDA, AMPA/kainite, and calcium channel antagonists on traumatic cortical neuronal injury in culture. Brain Res., 633, 236-242 (1994)   DOI   PUBMED   ScienceOn
13 Matsuda, H., Murakami, T., Ikebata, A., Yamahara, J. and Yoshikawa, M., Bioactive saponins and glycosides. XIV Structure elucidation and immunological adjuvant activity of novel protojujubogenin type triterpene bisdesmodides, protojujubosides A, B and BI, from the seeds of Zizyphus jujuba var. spinosa (Zizyphi Spinosi Semen). Chern. Pharm. Bull., 47, 1744-1748 (1999)   DOI   ScienceOn
14 Choi, D. W., Excitotoxic cell death. J. Neurobiol., 23, 1261-1276 (1992)   DOI   PUBMED
15 Arias, C., Montiel, T. and Rapia, R, Transmitter release in hippocampal slices from rats with limbic seizures produced by systemic administration of kainic acid. Neurochem. Res., 15, 641-646 (1990)   DOI   PUBMED
16 Carroll, F. Y., Cheung, N. S. and Beart, P. M., Investigations of non-NMDA receptor-induced toxicity in serum-free antioxidantrich primary cultures of murine cerebellar granule cells. Neurochem. Int. 33, 23-28 (1998)   DOI   ScienceOn
17 Sperk, G., Kainic acid seizures in the rat. Prog. Neurobiol, 42, 1-32 (1994)   DOI   PUBMED   ScienceOn
18 Weiss, J. H., Hartley, D. M., Koh, J. and Choi, D. W., The calcium channel blocker nifedipine attenuates slow excitatory amino acid neurotoxicity. Science 247, 1474-1477 (1990)   DOI   PUBMED
19 Berridge, M. V. and Tan, A S., Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2,5-diphenyltetrazotium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch. Biochem. Biophys., 303, 474-482 (1993)   DOI   ScienceOn
20 Chopra, R. N., Nayar, S. L. and Chopra, I. C, Glossary of Indian Medicinal Plants. CSIR, New Delhi, p. 261, (1956)
21 Giusti, P., Franceschini, D., Petrone, D., Manev, H. and Floreani, M., In vitro and in vivo protection against kainate-induced excitotoxicity by melatonin. J. Pineal Res., 20, 226-231 (1996)   DOI   ScienceOn
22 Baltrons, M. A, Saadoun, S., Agullo, L. and Garcia, A, Regulation by calcium of the nitric oxide/cyclic GMP system in cerebellar granule cells and astroglia in culture. J. Neurosci. Res., 49, 333-341 (1997)   DOI   ScienceOn
23 Manev, H., Costa, E., Wroblewski, J. T. and Guidotti, A., Abusive stimulation of excitatory amino acid receptor: a strategy to limit neurotoxicity. FASEB J., 4, 2789-2797 (1990)   DOI
24 Ellison, D. W., Beal, M. F. and Martin, J. B., Amino acid neurotransmitters in postmortem human brain analyzed by high performance liquid chromatography with electro-ehemical detection. J. Neurosci., 19, 305-315 (1987)
25 Koh, J. Y, Goldberg, M. P., Hartley, D. M. and Choe, D. W., Non-NMDA receptor-mediated neurotoxicity in cortical culture. J. Neurosci., 10, 693-705 (1990)
26 Pereira, C. F. and Oliveira, C. R., Oxidative glutamate toxicity involves mitochondrial dysfunction and perturbation of intracellular $Ca^{2+}$ homeostasis. Neurosci. Res., 37, 227-236 (2000)   DOI   ScienceOn
27 Simonian, N. A., Getz, R. L., Leveque, J. C, Konrake, C. and Coyle, J. T., Kainic acid induces apoptosis in neurons. Neuroscience, 75,1047-1055 (1996)   DOI   ScienceOn
28 Drian, M. J., Kamenka, J. M. and Privat, A, In vitro neuroprotection against glutamate toxicity provided by novel non-competitive N-methyl-D-aspartate antagonists. J. Neurosci. Res., 57, 927-934 (1999)   DOI   ScienceOn
29 Weiss, J. H. and Sensi, S. L.,$Ca^{2+}-Zn^{2+}$ permeable AMPA or kainite receptors: possible key factors in selective neurodegeneration, Trends Neurosci., 23, 365-371 (2000)   DOI   ScienceOn
30 Solum, D., Hughes, D., Major, M. S. and Parks, T. N., Prevention of normally occurring and deafferentation-induced neuronal death in chick brainstem auditory neurons by periodic blockade of AMPA/kainite receptors. J. Neurosci., 17,4744-4751 (1997)
31 Jensen, J. B., Schousboe, A. and Pickering, D. S., AMPA receptor mediated excitotoxicity in neocortical neurons is developmentally regulated and dependent upon receptor desensitization. Neurochem. lnt., 32, 505-513 (1998)   DOI   ScienceOn
32 Coyle, J. T. and Puttfarcken, P., Oxidative stress, glutamate and neurodegenerative disorders. Science, 262, 689-694 (1993)   DOI   PUBMED
33 Duffy, S. and MacViar, B. A, In vitro ischemia promotes calcium influx and intracellular calcium release in hippocampal astrocytes. J. Neurosci., 16,71-81 (1996)
34 Ben-Ari, Y., Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy, Neuroscience, 14, 375-403 (1985)   DOI   PUBMED   ScienceOn
35 Han, B. H. and Park, M. H., Folk Medicine. American Chemical Society, Washington D.C., p. 205 (1986)
36 Mei, J. M., Chi, W. M., Trump, B. F. and Eccles, C. U., Involvement of nitric oxide in the deregulation of cytosolic calcium in cerebellar neurons during combined glucose-oxygen deprivation. Mol. Chem. Neuropathol., 27, 155-166 (1996)   DOI   ScienceOn
37 Gunasekar, P. G., Sun, P. W., Kanthasamy, A. G., Borowitz, J. L. and Isom, G. E., Cyanide-induced neurotoxicity involves nitric oxide and reactive oxygen species generation after N-MethylD- aspartate receptor activation. J. Pharmacol. Exp. Ther., 277, 150-155 (1996)
38 Brorson, J. R., Manzolillo, P. A. and Miller, R. J., $Ca^{2+}$ entry via AMPA/KA receptor and excitotoxicity in cultured cerebellar Purkinje cells. J. Neurosci., 14, 187-197 (1994)