Browse > Article
http://dx.doi.org/10.1186/s41240-019-0124-5

Change of growth performance, hematological parameters, and plasma component by hexavalent chromium exposure in starry flounder, Platichthys stellatus  

Ko, Hye-Dong (Department of Aquatic Life Medicine, Pukyong National University)
Park, Hee-Ju (Department of Aquatic Life Medicine, Pukyong National University)
Kang, Ju-Chan (Department of Aquatic Life Medicine, Pukyong National University)
Publication Information
Fisheries and Aquatic Sciences / v.22, no.5, 2019 , pp. 9.1-9.7 More about this Journal
Abstract
The study investigated the changes in growth performance, hematological parameters, plasma components, and stress indicators of juvenile starry flounder, Platichthys stellatus, depending on varying exposure to hexavalent chromium. P. stellatus was exposed to waterborne chromium at 0, 50, 100, 200, and 400 ppb for 4 weeks. The result showed that Cr exposure resulted in decreased daily length gain (DLG), daily weight gain (DWG), condition factor (CF), and hepatosomatic index (HIS) in P. stellatus. In terms of hematological parameters, red blood cell (RBC) count, hematocrit (Ht), and hemoglobin (Hb) significantly decreased at 400 ppb after 2 weeks. In terms of plasma components, inorganic analysis was unchanged and cholesterol, an organic component, considerably increased at 400 ppb after 4 weeks. Plasma enzyme components including glutamic oxalate transaminase (GOT) and glutamic pyruvate transaminase (GPT) were significantly increased. Stress indicators such as cortisol and glucose were notably increased over 100 ppb after 4 weeks with increasing chromium concentration. The results indicate that exposure to waterborne Cr induced toxic effects on growth, hematological parameters, plasma components, and stress indicators.
Keywords
Starry flounder; Hexavalent chromium; Growth; Hematological parameters; Stress;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bolger T, Connolly PL. The selection of suitable indices for the measurement and analysis of fish condition. J Fish Biol. 1989;34(2):171-82.   DOI
2 CiCiK B, ENGiN K. The effects of cadmium on levels of glucose in serum and glycogen reserves in the liver and muscle tissues of Cyprinus carpio (L., 1758). Turk J Vet Anim Sci. 2005;29(1):113-7.
3 Datta S, Saha DR, Ghosh D, Majumdar T, Bhattacharya S, Mazumder S. Sub-lethal concentration of arsenic interferes with the proliferation of hepatocytes and induces in vivo apoptosis in Clarias batrachus L. Comp Biochem Physiol Part C: Toxicol & Pharmacol. 2007;145(3):339-49.   DOI
4 Ding L, Zhang L, Wang J, Ma J, Meng X, Duan P, et al. Effect of dietary lipid level on the growth performance, feed utilization, body composition and blood chemistry of juvenile starry flounder (Platichthys stellatus). Aquac Res. 2010;41(10):1470-8.   DOI
5 Ellis AS, Johnson TM, Bullen TD. Chromium isotopes and the fate of hexavalent chromium in the environment. Science. 2002;295(5562):2060-2.   DOI
6 Farag AM, May T, Marty GD, Easton M, Harper DD, Little EE, Cleveland L. The effect of chronic chromium exposure on the health of Chinook salmon (Oncorhynchus tshawytscha). Aquat Toxicol. 2006;76(3-4):246-57.   DOI
7 Firat O, Cogun HY, Yuzereroglu TA, Gok G, Firat O, Kargin F, Kotemen Y. A comparative study on the effects of a pesticide (cypermethrin) and two metals (copper, lead) to serum biochemistry of Nile tilapia, Oreochromis niloticus. Fish Physiol Biochem. 2011;37(3):657-66.   DOI
8 Firat O, Kargin F. Individual and combined effects of heavy metals on serum biochemistry of Nile tilapia Oreochromis niloticus. Arch Environ Contam Toxicol. 2010;58(1):151-7.   DOI
9 Garcia GG, Miguel EJL, Gabriel MAL, Mingala CN. The corollary effect of heavy metal accumulation in freshwater ponds on the hematological profile of Nile Tilapia (Oreochromis niloticus). Environ Exp Biol. 2016;14:69-73.   DOI
10 Gill TS, Epple A. Stress-related changes in the hematological profile of the American eel (Anguilla rostrata). Ecotoxicol Environ Saf. 1993;25(2):227-35.   DOI
11 Kang JH, Kim YK, Park JY, An CM, Nam MM, Byun SG, et al. Microsatellite analysis as a tool for discriminating an interfamily hybrid between olive flounder and starry flounder. Genet Mol Res. 2011;10(4):2786-94.   DOI
12 Gopal V, Parvathy S, Balasubramanian PR. Effect of heavy metals on the blood protein biochemistry of the fish Cyprinus carpio and its use as a bio-indicator of pollution stress. Environ Monit Assess. 1997;48(2):117-24.   DOI
13 Hussain SM, Javed M, Asghar S, Hussain M, Abdullah S, Raza SA, Javid A. Studies on growth performance of metals mixture stressed Cirrhina mrigala in earthen ponds. Pak J Agri Sci. 2010;47(3):263-70.
14 Jacobs JA, Testa SM. Overview of chromium (VI) in the environment: background and history. Chromium (VI) handbook; 2005. p. 1-21.
15 Kavitha C, Malarvizhi A, Kumaran SS, Ramesh M. Toxicological effects of arsenate exposure on hematological, biochemical and liver transaminases activity in an Indian major carp, Catla catla. Food Chem Toxicol. 2010; 48(10):2848-54.   DOI
16 Khalid MV, Qureshi NA, Mubarik MS, Bukhari SA. Heavy metals (copper, chromium and cadmium) induced oxidative stress biomarkers on haematological parameters of Labeo rohita. Oxid Commun. 2016;39(1):163-76.
17 Krumschnabel G, Nawaz M. Acute toxicity of hexavalent chromium in isolated teleost hepatocytes. Aquat Toxicol. 2004;70(2):159-67.   DOI
18 Kumar R, Banerjee TK. Arsenic induced hematological and biochemical responses in nutritionally important catfish Clarias batrachus (L.). Toxicol Rep. 2016;3:148-52.   DOI
19 Lee SM, Lee JH, Kim KD. Effect of dietary essential fatty acids on growth, body composition and blood chemistry of juvenile starry flounder (Platichthys stellatus). Aquaculture. 2003;225(1-4):269-81.   DOI
20 Kumari K, Khare A, Dange S. The applicability of oxidative stress biomarkers in assessing chromium induced toxicity in the fish Labeo rohita. Biomed Res Int. 2014;2014:782493.   DOI
21 Liu YX, Yuan DX, Yan JM, Li QL, Ouyang T. Electrochemical removal of chromium from aqueous solutions using electrodes of stainless steel nets coated with single wall carbon nanotubes. J Hazard Mater. 2011;186(1):473-80.   DOI
22 Mishra AK, Mohanty B. Effect of hexavalent chromium exposure on the pituitary-interrenal axis of a teleost, Channa punctatus (Bloch). Chemosphere. 2009;76(7):982-8.   DOI
23 Molinero A, Gonzalez J. Comparative effects of MS 222 and 2-phenoxyethanol on gilthead sea bream (Sparus aurata L.) during confinement. Comp Biochem Physiol A Physiol. 1995;111(3):405-14.   DOI
24 Norris DO, Donahue S, Dores RM, Lee JK, Maldonado TA, Ruth T, Woodling JD. Impaired adrenocortical response to stress by brown trout, Salmo trutta, living in metal-contaminated waters of the Eagle River, Colorado. Gen Comp Endocrinol. 1999;113(1):1-8.   DOI
25 Oner M, Atli G, Canli M. Changes in serum biochemical parameters of freshwater fish Oreochromis niloticus following prolonged metal (ag, cd, Cr, cu, Zn) exposures. Environ Toxicol Chem. 2008;27(2):360-6.   DOI
26 Oze C, Fendorf S, Bird DK, Coleman RG. Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California. Am J Sci. 2004a;304(1):67-101.   DOI
27 Ramesh M, Sankaran M, Veera-Gowtham V, Poopal RK. Hematological, biochemical and enzymological responses in an Indian major carp Labeo rohita induced by sublethal concentration of waterborne selenite exposure. Chem Biol Interact. 2014;207:67-73.   DOI
28 Oze C, Fendorf S, Bird DK, Coleman RG. Chromium geochemistry of serpentine soils. Int Geol Rev. 2004b;46(2):97-126.   DOI
29 Pratap HB, Fu H, Lock RAC, Bonga SW. Effect of waterborne and dietary cadmium on plasma ions of the teleostOreochromis mossambicus in relation to water calcium levels. Arch Environ Contam Toxicol. 1989;18(4):568-75.   DOI
30 Pratap HB, Wendelaar Bonga SE. Effects of water-borne cadmium on plasma cortisol and glucose in the cichlid fish Oreochromis mossambicus; 1990.
31 Reddy SLN, Venugopal NBRK. In vivo effects of cadmium chloride on certain aspects of protein metabolism in tissues of a freshwater field crabBarytelphusa guerini. Bull Environ Contam Toxicol. 1991;46(4):583-90.   DOI
32 Ribeiro CO, Neto FF, Mela M, Silva PH, Randi MAF, Rabitto IS, et al. Hematological findings in neotropical fish Hoplias malabaricus exposed to subchronic and dietary doses of methylmercury, inorganic lead, and tributyltin chloride. Environ Res. 2006;101(1):74-80.   DOI
33 Robles-Camacho J, Armienta MA. Natural chromium contamination of groundwater at Leon Valley, Mexico. J Geochem Explor. 2000;68(3):167-81.   DOI
34 Saravanan M, Kumar KP, Ramesh M. Haematological and biochemical responses of freshwater teleost fish Cyprinus carpio (Actinopterygii: Cypriniformes) during acute and chronic sublethal exposure to lindane. Pestic Biochem Physiol. 2011;100(3):206-11.   DOI
35 Suzuki N, Yamamoto M, Watanabe K, Kambegawa A, Hattori A. Both mercury and cadmium directly influence calcium homeostasis resulting from the suppression of scale bone cells: the scale is a good model for the evaluation of heavy metals in bone metabolism. J Bone Miner Metab. 2004;22(5):439-46.   DOI
36 Sathya V, Ramesh M, Poopal RK, Dinesh B. Acute and sublethal effects in an Indian major carp Cirrhinus mrigala exposed to silver nitrate: Gill Na+/K+-ATPase, plasma electrolytes and biochemical alterations. Fish Shellfish Immunol. 2012;32(5):862-8.   DOI
37 Sherwood GD, Rasmussen JB, Rowan DJ, Brodeur J, Hontela A. Bioenergetic costs of heavy metal exposure in yellow perch (Perca flavescens): in situ estimates with a radiotracer (137Cs) technique. Can J Fish Aquat Sci. 2000;57(2):441-50.   DOI
38 Song Z, Li H, Wang J, Li P, Sun Y, Zhang L. Effects of fishmeal replacement with soy protein hydrolysates on growth performance, blood biochemistry, gastrointestinal digestion and muscle composition of juvenile starry flounder (Platichthys stellatus). Aquaculture. 2014;426:96-104.   DOI
39 Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. In: Molecular, clinical and environmental toxicology. Basel: Springer; 2012. p. 133-64.
40 Vaglio A, Landriscina C. Changes in liver enzyme activity in the TeleostSparus auratain response to cadmium intoxication. Ecotoxicol Environ Saf. 1999;43(1):111-6.   DOI
41 Vasudevan S, Lakshmi J, Vanathi R. Electrochemical coagulation for chromium removal: process optimization, kinetics, isotherms and sludge characterization. CLEAN-Soil, Air, Water. 2010;38(1):9-16.   DOI
42 Velusamy A, Kumar PS, Ram A, Chinnadurai S. Bioaccumulation of heavy metals in commercially important marine fishes from Mumbai Harbor, India. Mar Pollut Bull. 2014;81(1):218-24.   DOI
43 Yang JL, Chen HC. Effects of gallium on common carp (Cyprinus carpio): acute test, serum biochemistry, and erythrocyte morphology. Chemosphere. 2003;53(8):877-82.   DOI
44 Vinodhini R, Narayanan M. The impact of toxic heavy metals on the hematological parameters in common carp (Cyprinus carpio L.). Iranian J Environ Health Sci Eng (IJEHSE). 2009;6:1.
45 Vosyliene MZ, Jankaite A. Effect of heavy metal model mixture on rainbow trout biological parameters. Ekologija. 2006;4:12-7.
46 Vutukuru SS. Acute effects of hexavalent chromium on survival, oxygen consumption, hematological parameters and some biochemical profiles of the Indian major carp, Labeo rohita. Int J Environ Res Public Health. 2005;2(3):456-62.   DOI
47 Zebral YD, Anni ISA, Afonso SB, Abril SIM, Klein RD, Bianchini A. Effects of lifetime exposure to waterborne copper on the somatotropic axis of the viviparous fish Poecilia vivipara. Chemosphere. 2018;203:410-7.   DOI