Browse > Article
http://dx.doi.org/10.5657/FAS.2014.0095

Growth and Fatty Acid Composition of Juvenile Olive Flounder Paralichthys olivaceus Fed Diets Containing Different Levels and Ratios of Eicosapentaenoic Acid and Docosahexaenoic Acid  

Choi, Jin (Department of Marine Bioscience and Technology, Gangneung-Wonju National University)
Aminikhoei, Zahra (Department of Marine Bioscience and Technology, Gangneung-Wonju National University)
Kim, Kyoung-Duck (Aqua feed Research Center, National Fisheries Research and Development Institute)
Lee, Sang-Min (Department of Marine Bioscience and Technology, Gangneung-Wonju National University)
Publication Information
Fisheries and Aquatic Sciences / v.17, no.1, 2014 , pp. 95-103 More about this Journal
Abstract
This study was carried out to investigate the influences of dietary levels, ratios and sources of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the growth and fatty acid compositions of juvenile olive flounder Paralichthys olivaceus. Sixteen diets containing five levels of EPA (0.5%, 1.0%, 1.5%, 2.0%, and 4.0%), five levels of DHA (0.5%, 1.0%, 1.5%, 2.0% and 4.0%), three ratios of EPA/DHA (75/25, 50/50 and 25/75), two levels of squid liver oil (5% and 10%) and a control diet containing 5% soybean oil were hand-fed to triplicate groups of fish (average weight, $9.7{\pm}0.3g$) for 8 weeks. Survival, specific growth rate, feed efficiency and protein efficiency ratio of fish were not affected by dietary EPA and DHA levels or ratios. Also, the dietary treatment had no significant effect on the lipid and protein contents of muscle and whole body of fish. A corresponding increase in the EPA and DHA contents of fish occurred with increasing EPA and DHA levels in their diets. Our results suggest that juvenile olive flounder require a dietary EPA level of approximately 0.32% in the presence of 0.74% DHA for suitable survival and growth, and that EPA and DHA levels in fish muscle can increase to as much as 32% and 53%, respectively, of the total fatty acid content.
Keywords
Paralichthys olivaceus; Dietary EPA and DHA level; EPA/DHA ratio;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Dickey-Collas M and Geffen AJ. 1992. Importance of the fatty acids $20:5{\omega}3$ and $22:6{\omega}3$ in the diet of plaice (Pleuronectes platessa) larvae. Mar Biol 113, 463-468. http://dx.doi.org/10.1007/BF00349172.   DOI
2 Bell MV and Dick JR. 2004. Changes in capacity to synthesise 22:6n-3 during early development in rainbow trout (Oncorhynchus mykiss). Aquaculture 235, 393-409. http://dx.doi.org/10.1016/j.aquaculture.2003.09.007.   DOI   ScienceOn
3 Bell MV, Henderson RJ and Sargent JR. 1985. Changes in the fatty acid composition of phospholipids from turbot (Scophthalmus maximus) in relation to dietary polyunsaturated fatty acid deficiencies. Comp Biochem Physiol B 81, 193-198. http://dx.doi.org/10.1016/0305-0491(85)90182-8.   DOI   ScienceOn
4 Caballero MJ, Obach A, Rosenlund G, Montero D, Gisvold M and Izquierdo MS. 2002. Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Oncorhynchus mykiss. Aquaculture 214, 253-271. http://dx.doi.org/10.1016/S0044-8486(01)00852-3.   DOI   ScienceOn
5 Duncan DB. 1955. Multiple-range and multiple F tests. Biometrics 11, 1-42. http://dx.doi.org/10.2307/3001478.   DOI   ScienceOn
6 Estevez A, McEvoy LA, Bell JG and Sargent JR. 1999. Growth, survival, lipid composition and pigmentation of turbot (Scophthalmus maximus) larvae fed live-prey enriched in arachidonic and eicosapentaenoic acids. Aquaculture 180, 321-343. http://dx.doi.org/10.1016/S0044-8486(99)00209-4.   DOI   ScienceOn
7 Farkas T, Csengeri I, Majoros F and Olah J. 1980. Metabolism of fatty acids in fish: III. Combined effect of environmental temperature and diet on formation and deposition of fatty acids in the carp, Cyprinus carpio Linnaeus 1758. Aquaculture 20, 29-40. http://dx.doi.org/10.1016/0044-8486(80)90059-9.   DOI   ScienceOn
8 Folch J, Lees M and Sloane-Stanley GH. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226, 497-509.
9 Furuita H, Takeuchi T, Watanabe T, Fujimoto H, Sekiya S and Imaizumi K. 1996. Requirements of larval yellowtail for eicosapentaenoic acid, docosahexaenoic acid and n-3 highly unsaturated fatty acids. Fish Sci 62, 372-379.   DOI
10 Gatesoupe FJ, Leger C, Boudon M, Metailler R and Luquet P. 1977. Lipid feeding of turbot (Scophthalmus maximus L.): 2. Influence on growth of supplementation with methyl esters of linolenic acid and fatty acids of the w 9 series. Ann Hydrobiol 8, 247- 254.
11 Furuita H, Takeuchi T. and Uematsu K. 1998. Effect of eicosapentaenoic and docosahexaenoic acids on growth, survival and brain development of larval Japanese flounder (Paralichthys olivaceus). Aquaculture 161, 269-279. http://dx.doi.org/10.1016/S0044-8486(97)00275-5.   DOI   ScienceOn
12 Harel M, Gavasso S, Leshin J, Gubernatis A and Place AR. 2001. The effect of tissue docosahexaenoic and arachidonic acids levels on hypersaline tolerance and leucocyte composition in striped bass (Morone saxatilis) larvae. Fish Physiol Biochem 24, 113-123. http://dx.doi.org/10.1023/A:1011924704459.   DOI   ScienceOn
13 Furuita H, Konishi K and Takeuchi T. 1999. Effect of different levels of eicosapentaenoic acid and docosahexaenoic acid in Artemia nauplii on growth, survival and salinity tolerance of larvae of the Japanese flounder, Paralichthys olivaceus. Aquaculture 170, 59-69. http://dx.doi.org/10.1016/S0044-8486(98)00386-X.   DOI   ScienceOn
14 Furuita H, Tanaka H, Yamamoto T, Suzuki N and Takeuchi T. 2002. Effects of high levels of n-3 HUFA in broodstock diet on egg quality and egg fatty acid composition of Japanese flounder, Paralichthys olivaceus. Aquaculture 210, 323-333. http://dx.doi.org/10.1016/S0044-8486(01)00855-9.   DOI   ScienceOn
15 Hamre K and Harboe T. 2008. Critical levels of essential fatty acids for normal pigmentation in Atlantic halibut (Hippoglossus hippoglossus L.) larvae. Aquaculture 277, 101-108. http://dx.doi.org/10.1016/j.aquaculture.2008.02.020.   DOI   ScienceOn
16 Hong DD, Takahashi Y, Kushiro M and Ide T. 2003. Divergent effects of eicosapentaenoic and docosahexaenoic acid ethyl esters, and fish oil on hepatic fatty acid oxidation in the rat. Biochim Biophys Acta 1635, 29-36. http://dx.doi.org/10.1016/j.bbalip.2003.10.003.   DOI   ScienceOn
17 Ibeas C, Cejas JR, Fores R, Badia P, Gomez T, Lorenzo Henandez L. 1997. Influence of eicosapentaenoic to docosahexaenoicacid ratio (EPA/DHA) of dietary lipids on growth and fatty acid composition of gilthead seabream (Sparus aurata) juveniles. Aquaculture 150, 91-102. http://dx.doi.org/10.1016/S0044-8486(96)01473-1.   DOI   ScienceOn
18 Iwata N, Kikuchi K, Honda H, Kiyono M and Kurokura H. 1994. Effects of temperature on the growth of Japanese flounder, Paralichthys olivaceus. Fish Sci 60, 527-531.   DOI
19 Izquierdo MS, Arakawa T, Takeuchi T, Haroun R and Watanabe T. 1992. Effect of n-3 HUFA levels in Artemia on growth of larval Japanese flounder (Paralichthys olivaceus). Aquaculture 105, 73-82. http://dx.doi.org/10.1016/0044-8486(92)90163-F.   DOI   ScienceOn
20 Ibeas C, Rodriguez C, Badia P, Cejas JR, Santamaria FJ and Lorenzo A. 2000. Efficacy of dietary methyl esters of n-3 HUFA vs. triacylglycerols of n-3 HUFA by gilthead seabream (Sparus aurata L.) juveniles. Aquaculture 190, 273-287. http://dx.doi.org/10.1016/S0044-8486(00)00399-9.   DOI   ScienceOn
21 Izquierdo MS, Watanabe T, Takeuchi T, Arakawa T and Kitajima C. 1989. Requirement of larval red seabream Pagrus major for essential fatty acids. Nippon Suisan Gakkaishi 55, 859-867. http://dx.doi.org/10.2331/suisan.55.859.   DOI
22 Kim DK, Kim KD, Seo JY and Lee SM. 2012. Effects of dietary lipid source and level on growth performance, blood parameters and flesh quality of sub-adult olive flounder (Paralichthys olivaceus). Asian Aust J Anim Sci 25, 869-879. http://dx.doi.org/10.5713/ajas.2011.11470.   과학기술학회마을   DOI   ScienceOn
23 Kim KD and Lee SM. 2004. Requirement of dietary n-3 highly unsaturated fatty acids for juvenile flounder (Paralichthys olivaceus). Aquaculture 229, 315-323. http://dx.doi.org/10.1016/S0044-8486(03)00356-9.   DOI   ScienceOn
24 Lee SM. 2001. Review of the lipid and essential fatty acid requirements of rockfish (Sebastes schlegeli). Aquac Res 32, 8-17. http://dx.doi.org/10.1046/j.1355-557x.2001.00047.x.   DOI   ScienceOn
25 Mourente G and Bell JG. 2006. Partial replacement of dietary fish oil with blends of vegetable oils (rapeseed, linseed and palm oils) in diets for European sea bass (Dicentrarchus labrax L.) over a long term growth study: effects on muscle and liver fatty acid composition and effectiveness of a fish oil finishing diet. Comp Biochem Physiol B Biochem Mol Biol 145, 389-399. http://dx.doi.org/10.1016/j.cbpb.2006.08.012.   DOI   ScienceOn
26 Lee SM, Cho SH and Kim KD. 2000. Effects of dietary protein and energy levels on growth and body composition of juvenile flounder Paralichthys olivaceus. J World Aquac Soc31, 306-315. http://dx.doi.org/10.1111/j.1749-7345.2000.tb00882.x.   DOI   ScienceOn
27 Lee SM, Lee JH and Kim KD. 2003. Effect of dietary essential fatty acids on growth, body composition and blood chemistry of juvenile starry flounder (Platichthys stellatus). Aquaculture 225, 269-281. http://dx.doi.org/10.1016/S0044-8486(03)00295-3.   DOI   ScienceOn
28 Rodriguez C, Perez JA, Izquierdo MS, Mora J, Lorenzo A and Fernandez-Palacios H. 1994. Essential fatty acids requirements of larval gilthead sea bream (Sparus aurata L.). Aquac Res 25, 295-304. http://dx.doi.org/ 10.1111/j.1365-2109.1994.tb00692.x.   DOI
29 Olsson GB, Olsen RL, Carlehog M and Ofstad R. 2003. Seasonal variations in chemical and sensory characteristics of farmed and wild Atlantic halibut (Hippoglossus hippoglossus). Aquaculture 217, 191-205. http://dx.doi.org/10.1016/S0044-8486(02)00191-6.   DOI   ScienceOn
30 Ostbye TK, Kjaer MA, Rora AMB, Torstensen B and Ruyter B. 2011. High n-3 HUFA levels in the diet of Atlantic salmon affect muscle and mitochondrial membrane lipids and their susceptibility to oxidative stress. Aquac Nutr 17, 177-190. http://dx.doi.org/10.1111/j.1365-2095.2009.00721.x.   DOI   ScienceOn
31 Takeuchi T and Watanabe T. 1979. Effect of excess amounts of essential fatty acids on growth of rainbow trout. Nippon Suisan Gakkaishi 45, 1517-1519.   DOI
32 Sargent J, Bell G, McEvoy L, Tocher D and Estevez A. 1999. Recent developments in the essential fatty acid nutrition of fish. Aquaculture 177, 191-199. http://dx.doi.org/10.1016/S0044-8486(99)00083-6.   DOI   ScienceOn
33 Sharma P, Kumar V, Sinha AK, Ranjan J, Kithsiri HMP and Venkateshwarlu G. 2010. Comparative fatty acid profiles of wild and farmed tropical freshwater fish rohu (Labeo rohita). Fish Physiol Biochem 36, 411-417. http://dx.doi.org/10.1007/s10695-009-9309-7.   DOI
34 Stickney RR and Andrews JW. 1972. Effects of dietary lipids on growth, food conversion, lipid and fatty acid composition of channel catfish. J Nutr 102, 249-258.   DOI
35 Takeuchi T, Toyota M and Watanabe T. 1992. Comparison of lipid and n-3 highly unsaturated fatty acid incorporations between Artemia enriched with various types of oil by direct method. Nippon Suisan Gakkaishi 58, 277-281. http://dx.doi.org/10.2331/suisan.58.277.   DOI
36 Turchini GM, Francis DS and De Silva SS. 2007. A whole body, in vivo, fatty acid balance method to quantify PUFA metabolism (desaturation, elongation and beta-oxidation). Lipids 42, 1065-1071. http://dx.doi.org/10.1007/s11745-007-3105-x.   DOI   ScienceOn
37 Takeuchi T, Masuda R, Ishizaki Y, Watanabe T, Kanematsu M, Imaizumi K and Tsukamoto K. 1996. Determination of the requirement of larval striped jack for eicosapentaenoic acid and docosahexaenoic acid using enriched Artemia nauplii. Fish Sci 62, 760-765.   DOI
38 Tocher DR. 2003. Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11, 107-184. http://dx.doi.org/10.1080/713610925.   DOI   ScienceOn
39 Watanabe T and Kiron V. 1994. Prospects in larval fish dietetics. Aquaculture 124, 223-251. http://dx.doi.org/10.1016/0044-8486(94)90386-7.   DOI   ScienceOn
40 Tocher DR. 2010. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquac Res 41, 717-732. http://dx.doi.org/10.1111/j.1365-2109.2008.02150.x.   DOI   ScienceOn
41 Watanabe T, Izquierdo MS, Takeuchi T, Satoh S and Kitajima C. 1989. Comparison between eicosapentaenoic and docosahexaenoic acids in terms of essential fatty acid efficacy in larval red sea bream. Nippon Suisan Gakkaishi 55, 1635-1640.   DOI
42 Yoshimatsu T, Imoto H, Hayash M, Toda K and Yoshimura K. 1997. Preliminary results in improving essential fatty acids enrichment of rotifer cultured in high density. Hydrobiologia 358, 153-157. http://dx.doi.org/10.1007/978-94-017-2097-7_23.   DOI
43 Zuo R, Ai Q, Mai K, Xu W, Wang J, Xu H, Liufu Z and Zhang Y. 2012. Effects of dietary docosahexaenoic to eicosapentaenoic acid ratio (DHA/EPA) on growth, nonspecific immunity, expression of some immune related genes and disease resistance of large yellow croaker (Larmichthys crocea) following natural infestation of parasites (Cryptocaryon irritans). Aquaculture 334, 101-109. http://dx.doi.org/10.1016/j.aquaculture.2011.12.045.   DOI   ScienceOn