Browse > Article
http://dx.doi.org/10.5657/FAS.2013.0187

Quantification of the Sub-lethal Toxicity of Metals and Endocrine-disrupting Chemicals to the Marine Green Microalga Tetraselmis suecica  

Ebenezer, Vinitha (Department of Life Science, Sangmyung University)
Ki, Jang-Seu (Department of Life Science, Sangmyung University)
Publication Information
Fisheries and Aquatic Sciences / v.16, no.3, 2013 , pp. 187-194 More about this Journal
Abstract
Microalgae are sensitive indicators of environmental changes, and hence they are widely used in environmental risk assessments and for the development of discharge guidelines. Here we evaluated the toxicity of metals and endocrine-disrupting chemicals (EDCs) to the marine green microalga, Tetraselmis suecica. The toxicants investigated included the metals, Cu, Ni, and Pb; and the EDCs, bisphenol A (BPA), endosulfan (ES), and polychlorinated biphenyl (PCB). The endpoints were variations in cell counts and chlorophyll a levels. T. suecica displayed a varied pattern of sensitivity to the toxicants. Based on the 72-h median effective concentration ($EC_{50}$), ES (0.045 mg/L) was most toxic to T. suecica, followed by PCB (3.96 mg/L) and Pb (9.62 mg/L). Interestingly, T. suecica was relatively tolerant to Cu (43.03 mg/L). The 72-h $EC_{50}$ values of Ni and BPA were approximately 16 mg/L. Our data suggest that this species may be relatively tolerant to most of the chemicals within their permissible limits in the environment.
Keywords
Tetraselmis suecica; Ecotoxicity assessment; 72-h $EC_{50}$; Metals; EDCs;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Agency for Toxic Substances and Disease Registry. 2000. Toxicological profile for endosulfan [Internet]. United States Environmental Protection Agency, Washington, DC, US, Accessed 31 Dec 2012, http://water.epa.gov.
2 Becker EW. 2007. Micro-algae as a source of protein. Biotechnol Adv 25, 207-210. http://dx.doi.org/10.1016/j.biotechadv.2006.11.002.   DOI   ScienceOn
3 Brown MR. 2002. Nutritional value of microalgae for aquaculture. In: Avances en Nutricion Acuicola VI. Memorias del VI Simposium Internacional de Nutricion Acuicola. 3 al 6 de Septiembre del. Cruz-Suarez LE, Ricque-Marie D, Tapia-Salazar M, Gaxiola-Cortes MG and Simoes N, eds. Cancun, Quintana Roo, MX.
4 De Lorenzo ME, Taylor LA, Lund SA, Pennington PL, Strozier ED and Fulton MH. 2002. Toxicity and bioconcentration potential of the agricultural pesticide endosulfan in phytoplankton and zooplankton. Arch Environ Contam Toxicol 42, 173-181. http://dx.doi.org/10.1007/s00244-001-0008-3.   DOI   ScienceOn
5 Debelius B, Forja JM, DelValls A and Lubian LM. 2009. Toxicity and bioaccumulation of copper and lead in five marine microalgae. Ecotoxicol Environ Saf 72, 1503-1513. http://dx.doi.org/10.1016/j.ecoenv.2009.04.006.   DOI   ScienceOn
6 Ebenezer V and Ki JS. 2012. Evaluation of the sub-lethal toxicity of Cu, Pb, bisphenol A and polychlorinated biphenyl to the marine dinoflagellate Cochlodinium polykrikoides. Algae 27, 63-70. http://dx.doi.org/10.4490/algae.2012.27.1.063.   과학기술학회마을   DOI   ScienceOn
7 Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB and Smith JE. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10, 1135-1142. http://dx.doi.org/10.1111/j.1461-0248.2007.01113.x.   DOI   ScienceOn
8 Franklin NM, Stauber JL, Apte SC and Lim RP. 2002. Effect of initial cell density on the bioavailability and toxicity of copper in microalgal bioassays. Environ Toxicol Chem 21, 742-751. http://dx.doi.org/10.1002/etc.5620210409.   DOI   ScienceOn
9 Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE and Casey PS. 2007. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41, 8484-8490. http://dx.doi.org/10.1021/es071445r.   DOI   ScienceOn
10 Guillard RRL and Ryther JH. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana (Hustedl), and Detonula confervaceae (Cleve gran). Can J Microbiol 8, 229-239. http://dx.doi.org/10.1139/m62-029.   DOI   ScienceOn
11 Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB and Buxton HT. 2002. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance. Environ Sci Technol 36, 1202-1211. http://dx.doi.org/10.1021/es011055j.   DOI   ScienceOn
12 Leitao MADS, Cardozo KHM, Pinto E and Colepicolo P. 2003. PCB-induced oxidative stress in the unicellular marine dinoflagellate Lingulodinium polyedrum. Arch Environ Contam Toxicol 45, 59-65. http://dx.doi.org/10.1007/s00244-002-0208-5.   DOI   ScienceOn
13 Li R, Chen GZ, Tam NFY, Luan TG, Shin PKS, Cheung SG and Liu Y. 2009. Toxicity of bisphenol A and its bioaccumulation and removal by a marine microalga Stephanodiscus hantzschii. Ecotoxicol Environ Saf 72, 321-328. http://dx.doi.org/10.1016/j.ecoenv.2008.05.012.   DOI   ScienceOn
14 Liu Y, Guan Y, Gao Q, Tam NFY and Zhu W. 2010. Cellular responses, biodegradation and bioaccumulation of endocrine disrupting chemicals in marine diatom Navicula incerta. Chemosphere 80, 592-599. http://dx.doi.org/10.1016/j.chemosphere.2010.03.042.   DOI   ScienceOn
15 Millan de Kuhn M, Streb C, Breiter R, Richter P, Neesse T and Hader DP. 2006. Screening for unicellular algae as possible bioassay organisms for monitoring marine water samples. Water Res 40, 2695-2703. http://dx.doi.org/10.1016/j.watres.2006.04.045.   DOI   ScienceOn
16 Nalewajko C and Olaveson MM. 1998. Ecophysiological considerations in microalgal toxicity tests. In: Microscale Testing in Aquatic Toxicology: Advances, Techniques and Practice. Wells PG, Lee K and Blaise C, eds. CRC Press, Boca Raton, FL, US, pp. 289-309.
17 Moffett JW and Zika RG. 1987. The photochemistry of copper complexes in seawater. In: Photochemistry of Environmental Aquatic Systems. Zika RG and Cooper WJ, eds. American Chemical Society, Washington, DC, US, pp. 116-130.
18 Montero MF, Aristizabal M and Reina GG. 2011. Isolation of high-lipid content strains of the marine microalga Tetraselmis suecica for biodiesel production by flow cytometry and single-cell sorting. J Appl Phycol 23, 1053-1057. http://dx.doi.org/10.1007/s10811-010-9623-6.   DOI
19 Nagpal NK, Pommen LW and Swain LG. 2006. Water quality: A compendium of working water quality guidelines for British Columbia [Internet]. British Columbia, Victoria, GB, Accessed 31 Dec 2012, http://www.env.gov.bc.ca.
20 Organisation for Economic Cooperation and Development. 2011. OECD Guidelines for the Testing of Chemicals. Freshwater Algal and Cyanobacteria Growth Inhibition Test. 201. OECD Publications, Paris, FR.
21 Parsons TR, Maita Y and Lalli CM. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford, GB.
22 Pavlic Z, Stjepanovic B, Horvatic J, Persic V, Puntaric D and Culig J. 2006. Comparative sensitivity of green algae to herbicides using Erlenmeyer flask and microplate growth inhibition assays. Bull Environ Contam Toxicol 76, 883-890. http://dx.doi.org/10.1007/s00128-006-1001-3.   DOI   ScienceOn
23 Perez-Rama M, Alonso JA, Lopez CH and Vaamonde ET. 2002. Cadmium removal by living cells of the marine microalga Tetraselmis suecica. Bioresour Technol 84, 265-270. http://dx.doi.org/10.1016/S0960-8524(02)00045-7.   DOI   ScienceOn
24 Soto-Jimenez MF, Arellano-Fiore C, Rocha-Velarde R, Jara-Marini ME, Ruelas-Inzunza J, Voltolina D, Frias-Espericueta MG, Quintero-Alvarez JM and Paez-Osuna F. 2011. Biological responses of a simulated marine food chain to lead addition. Environ Toxciol Chem 30, 1611-1617. http://dx.doi.org/10.1002/etc.537.   DOI   ScienceOn
25 Perron MC and Juneau P. 2011. Effect of endocrine disrupters on photosystem II energy fluxes of green algae and cyanobacteria. Environ Res 111, 520-529. http://dx.doi.org/10.1016/j.envres.2011.02.013.   DOI   ScienceOn
26 Sarthou G, Timmermans KR, Blain S and Treguer P. 2005. Growth physiology and fate of diatoms in the ocean: a review. J Sea Res 53, 25-42. http://dx.doi.org/10.1016/j.seares.2004.01.007.   DOI   ScienceOn
27 Shi XL, Lepere C, Scanlan DJ and Vaulot D. 2011. Plastid 16S rRNA gene diversity among eukaryotic picophytoplankton sorted by flow cytometry from the South Pacific Ocean. PLoS ONE 6 e18979. http://dx.doi.org/10.1371/journal.pone.0018979.   DOI   ScienceOn
28 Stauber JL and Davies CM. 2000. Use and limitations of microbial bioassays for assessing copper availability in the aquatic environment. Environ Rev 8, 255-301. http://dx.doi.org/10.1139/a00-010.   DOI   ScienceOn
29 Sverdrup LE, Kallqvist T, Kelley AE, Furst CS and Hagen SB. 2001. Comparative toxicity of acrylic acid to marine and freshwater microalgae and significance for environmental effects assessments. Chemosphere 45, 653-658. http://dx.doi.org/10.1016/S0045-6535(01)00044-3.   DOI   ScienceOn
30 Teisseyre A and Mozrzymas JW. 2006. The inhibitory effect of copper ions on lymphocyte KV1.3 potassium channels. J Physiol Pharmacol 57, 301-314.
31 Torres MA, Barros MP, Campos SCG, Pinto E, Rajamani S, Sayre RT and Colepicolo P. 2008. Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicol Environ Saf 7, 1-15. http://dx.doi.org/10.1016/j.ecoenv.2008.05.009.   DOI   ScienceOn
32 Vasseur P, Pandard P and Burnel D. 1988. Influence of some experimental factors on metal toxicity to Selenastrum capricornotum. Toxicol Assess 3, 331-343. http://dx.doi.org/10.1002/tox.2540030308.   DOI
33 United States Environmental Protection Agency (US EPA). 1996. Standards for the Use or Disposal of Sewage Sludge. Code of Federal Regulations, Title 40, Section 503. US Envitonmental Protection Agency, Washington, DC, US.