Browse > Article
http://dx.doi.org/10.5657/fas.2010.13.3.210

Isolation and Characterization of Marinobacter sp. KS-1, which Produces a Chondroitin Sulfate-like Mucopolysaccharide  

Lee, Dae-Sung (POSTECH Ocean Science and Technology Institute, Pohang University of Science and Technology (POSTECH))
Kim, Kyung-Suk (Korea Advanced Food Research Institute (Busan Branch))
Lee, Myung-Suk (Department of Microbiology, Pukyong National University)
Kim, Young-Mog (Department of Food Science and Technology, Pukyong National University)
Publication Information
Fisheries and Aquatic Sciences / v.13, no.3, 2010 , pp. 210-215 More about this Journal
Abstract
In an effort to isolate a bacterium producing chondroitin sulfate (CS), a marine bacterium, KS-1, which produces mucopolysaccharides, was isolated from seawater and identified as Marinobacter sp. based on analyses of its morphological and biochemical traits and 16S rDNA sequence. Agarose-gel electrophoresis showed that the KS-1 strain produces a CS-like mucopolysaccharide. Structural analysis using Fourier transform infrared spectroscopy revealed that the structure of the CS-like mucopolysaccharide produced by Marinobacter sp. KS-1 is similar to that of dermatan sulfate (CS B). However, the molecular mass of the CS-like mucopolysaccharide is higher than that of standard chondroitin sulfates. Considering the above results, we conclude that the Marinobacter sp. KS-1 produces a CS-like mucopolysaccharide that differs somewhat from CS B in molecular mass.
Keywords
Chondroitin sulfate; Marine bacterium; Marinobacter sp.; Mucopolysaccharide;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Tandavanitj S, Ishida S and Okutani K. 1989. Isolation and characterization of an extracellular mucopolysaccha-ride produced by a marine strain of Pseudomonas. Nippon Suisan Gakkaishi 55, 2015-2019.   DOI
2 Volpi N. 1993. "Fast moving" and "slow moving" heparins, dermatan sulfate, and chondroitin sulfate: qualitative and quantitative analysis by agarose-gel electro-phoresis. Carbohydr Res 247, 263-278.   DOI   ScienceOn
3 Volpi N. 1996. Electrophoresis separation of gly-cosaminoglycans on nitrocellulose membranes. Anal Biochem 240, 114-118.   DOI   ScienceOn
4 Mac-Rae SM, Edelhauser HF, Hyndiuk RA, Burd EM and Schultz RO. 1983. The effects of sodium hyaluronate, chondroitin sulfate, and methycellulose on the corneal endothelium and intraocular pressure. Am J Ophthalmol 95, 332-341.   DOI
5 Moon JH, Ryu HS, Yang HS and Suh JS. 1998. Antimutagenic and anticancer effects of glycoprotein and chondroitin sulfates from sea cucumber (Stichopus japonicus). J Korean Soc Food Sci Nutr 27, 350-358.   과학기술학회마을
6 Mourao PA, Marians SP and Mauro SGP. 1996. Structure and anticoagulant activity of a fucosylated chondroitin sulfate from echinoderm. J Biol Chem 271, 23973-23984.   DOI   ScienceOn
7 Moyer CL, Dobbs FC and Karl DM. 1994. Estimation of diversity and community structure through RELF distribution analysis of bacterial 16S-rRNA genes from a microbial mat at an active, hydrothermalvent, Loihi Seamount, Hawii. Appl Env Microbiol 60, 871-879.
8 Smibert RM and Krieg N R. 1994. Phenotypic characterization. In Methods for General and Molecular Bacteriology. Gerhardt P, Murray RGE, Wood WA and Krieg NR, ed. ASM Press, Washington DC, U.S.A., 607-654.
9 Prince CW and Navia JM. 1983. Glycosaminoglycan alterations in rat bone due to growth and fluorosis. J Nutr 113, 1576-1582.   DOI
10 Sim JS, Jun GJ, Toida T, Cho SY, Choi DW, Chang SY, Linhardt RJ and Kim YS. 2005. Quantitative analysis of chondroitin sulfate in raw materials, ophthalmic solutions, soft capsules, and liquid preparations. J Chromatogr B 818, 133-139.   DOI   ScienceOn
11 Smith RL and Schurman DJ. 1983. Comparison of cartilage destruction between infectious and adjuvant arthritis. J Orthop Res, 1, 136-143.   DOI
12 Taga N. 1968. Some ecological aspects of marine bacteria in the Kuroshio current. Bull Misaki Mar Biol Kyoto Univ, 12, 50-76
13 Tanaka K. 1978. Physicochemical properties of chondroitin sulfate. I. Ion binding and secondary structure. J Biochem 83, 647-653.   DOI
14 Bjornsson TD, Nash PV and Schate R. 1982. The anticoagulant effect of chondroitin-4-sulfate. Thromb Res 7, 15-21.
15 Fontenele JB, Viana GS, Xavier-Filho J and De-Alencar JW. 1996. Anti-inflammatory and analgesic activity of a water-soluble fraction from shark cartilage. Braz J Med Biol Res 29, 643-646.
16 Ha BJ and Kim MH. 1999. Effect of chondroitin sulfate on collagen maturity and aging. J Fd Hyg Safety 14, 45-54.
17 KFDA (Korean Food and Drug Administration). 2009. The Health Functional Food Code. Seoul, Korea, III. 3. 4. 6.
18 Hjerpe A, Antonopoulos CA and Engfeldt B. 1979. Determination of sulphated disaccharides from chondroitin sulfates by high-performance liquid chromatography. J Chromatogr 171, 339-344.   DOI
19 Im AR, Sim JS, Park Y, Hahn BS, Toida T and Kim YS. 2009. Isolation and Characterization of Chondroitin Sulfates from the By products of Marine Organisms. Food Sci Biotechnol 18, 872-877.
20 Kang SH, Shin H, Chang SK and Yoon HJ. 1994. Determination of sodium chondroitin sulfate by enzymatic digestion and HPLC. J Korean Soc Analytical Sci 7, 245-251.   과학기술학회마을
21 Kim HJ, Yoon MS, Park KH, Shin JH, Heu MS and Kim JS. 2010. Processing optimization of gelatin from rockfish skin based on yield. Fish Aqua Sci 13, 1-11.
22 Krueger RCJ, Hennig AK and Schwartz NB. 1992. Two immunologically and developmentally distinct chondroitin sulfate proteoglycans in embryonic chick brain. J Biol Chem 267, 12149-12161.