Browse > Article
http://dx.doi.org/10.5657/fas.2009.12.3.171

Genetic Phylogeny among Three Species Red Seabream, Black Seabream and Rock Bream Based on Mitochondrial DNA Sequences  

Kim, Mi-Jung (Biotechnology Research Institute, National Fisheries Research and Development Institute)
An, Hye-Suck (Biotechnology Research Institute, National Fisheries Research and Development Institute)
Kim, Kyung-Kil (Biotechnology Research Institute, National Fisheries Research and Development Institute)
Park, Jung-Youn (Biotechnology Research Institute, National Fisheries Research and Development Institute)
Publication Information
Fisheries and Aquatic Sciences / v.12, no.3, 2009 , pp. 171-178 More about this Journal
Abstract
The Perciformes include approximately 40% of all bony fishes and are the largest order of vertebrates. This order includes some of the most economically relevant marine fishes, particularly the red seabream, black seabream and rock bream. A 409 bp fragment of the cytochrome b (cyt b) gene and 403 bp and 518 bp fragments of ribosomal RNA (12S and 16S rRNA, respectively) were sequenced from five populations of natural and cultured red seabreams, natural black seabream, and natural and cultured rock breams. The mitochondrial DNA sequences were utilized for the genetic identification and population structural analyses of these three species. Phylogenetic relationships of intra- and inter-species were elucidated using three types of molecular genetic markers from three species of the order Perciformes in Korea. We noted no significant differences in the intra-specific variation of the cyt b and rRNA genes in each population however, inter-specific divergences were greater than intra-specific variation. Inter-specific variation was induced more by transition than transversion type in the cyt b and rRNA genes. The cyt b gene and rRNA genes make it possible to determine the inter-species divergence. The rRNA genes have more conserved sequences than the cyt b gene. Therefore, these genes are expected to prove useful among species belonging to the different genera or families.
Keywords
Red seabream; Black seabream; Rock bream; Mitochondrial DNA; Phylogeny;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bartlett, S.E. and WS. Davidson. 1991. Identification of Thunnus tuna species by the polymerase chain reaction and direct sεquence analysis of their mitochondrial cytochrome b genes. Can. J. Fish. Aquat. Sci., 48, 309-317   DOI
2 Carr, S.M. and H.D. Marshall. 1991. Detection of intraspecific DNA sequence variation in the mitochondrial cytochrome b gene of Atlantic cod (Gadus morhua) by the polymerase chain reaction. Can. J. Fish. Aquat. Sci., 48, 48-52   DOI
3 Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignmεnt editor and analysis program for Windows 95/98INT, Nucleic Acids Symp. Ser. 41, 95-98
4 Kimura, M. 1980. A simplε method for estimating evolutionary rate of basε substitution through comparative studies of nucleotide sequences. J. Mol. Evol., 116, 111-120
5 Kocher, T.D., WK. Thomas, A. Maye, S.Y. Edwards, S. Paabo, F.X. Villablance and A.C. Willson. 1989, Dynamics of mitochondrial DNA εvolution in animals: amplification and sequencing with conserved pnmεrs. Proc. Natl. Acad. Sci. USA, 86, 6196-6200   DOI   ScienceOn
6 Li, J., X. Wang, X. Kong, K. Zhao, S. He and R.L. Mayden. 2008. Variation pattems of the mitochondrial 16S rRNA gene with secondary structure constraints and their application to phylogeny of cyprinine fishes (TIeleostei: Cypriniformes). Mol. Phylogenet. Evol., 47, 472-87   DOI   ScienceOn
7 Tojima, T., A. Kuwahara and S. Fujita 1995. Regional differences in the first ring radius on the scale of the red sea brem Pagrns majoror in the Tsushima Warm Current Area. Nippon Suisan Gakkaishi, 61, 874-879   DOI
8 Chapman, R.W and D.A. Powers. 1984. A method for the rapid isolation of mitochondrial DNA from fishes. Tech. Repo. No. UM-84-05. Maryland Sea Grant Program College Park, Maryland
9 Zardoya, R. and A. Meyer. 1996. Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates. Mol. Biol. Evol., 13, 933-942   DOI   PUBMED   ScienceOn
10 McVeigh, H.P., S.E. Bartlett and WS. Davidson. 1991 Polymerase chain reaction/ direct sequence analysis of the cytochrome b gene in Salmo salar. Aquaculture, 95, 225-233   DOI   ScienceOn
11 Lee, H.J., J.Y. Park, J.H. Lee, K.S. Min, I.G. Jeo, M.A. Yoo and W.H. Lee. 2000. Phylogeny of the subfamily Salmoninaε distributed in Korea based upon nucleotide sequencεs of mitochondrial ribosomal RNA genes. J. Kor. Fish. Soc. 33, 103-109
12 Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) Version 3.5c. Department of Genetics, University of Washington, Seattle
13 Hillis, D.M., C. Moritz and B.K. Mable. 1996. Molecular Systematics, 2nd Edition. Sinauer Associates, Sunderland MA. 1-13,205-381 ,385
14 Reina, J., G. Martinez, A. Amores and M.C. Alvarez.1994 Interspecific gεnetic differentiation in westem mediterranean sparid fish. Aquaculture, 125, 47-57   DOI   ScienceOn
15 Youngson, A.F., S.A.M. Martin, W.C. Jordan and E. Verspoor. 1991. Genetic protein variation in Atlantic salmon in Scotland: comparison of wild and farmed fish. Aquaculture, 98, 231-242   DOI   ScienceOn
16 Taniguchi, N. S. Matsumoto, A. Komatsu and M. Yamanaka. 1995. Diffiεrence observed in qualitative and quantitative traits of five red sea bream strains propagated under the same rearing conditions. Nippon Suisan Gakkaishi, 61 , 717-726   DOI
17 Campo, D., G. Machado-Schiaffino, J. Perez and E. Garcia-Vazquez. 2007. Phylogeny of the genus Merluccius based on mitochondrial and nuclear genes. Gene, 406, 171-179   DOI   PUBMED   ScienceOn
18 Funkenstein, B., B. Cavari, T. Stadie and E. Davidovitch. 1990. Restriction site polymorphism of mitochondrial DNA of the gilthead seabream (Sparus auratus) broodstock in Eilat, Israel. Aquaculture, 89, 217-223   DOI   ScienceOn
19 Saunders, N.C., L.o. Kesslεr and J.C. Avise. 1986. Genetic variation and geographic differentiation in mitochondrial DNA of the horsεshoe crab, Lmulus polyphemus. Genetics, 112, 613-627
20 Sneath, P.H.A. and R.R. Sokal. 1973. Numerical taxonomy - The principles and practice of numerical classifìcation. W. H. Freeman and Co., San Francisco, 573
21 Avise, J.C., E. Bermingham, L.G. Kesslεr and N.C. Saunders. 1984. Characterization of mitochondrial DNA variability in a hybrid swarm between subspecies of bluegill sunfish (Lepomis macrochirus). Evolution, 38, 931-941   DOI   ScienceOn
22 Billington, N. and P.D.N. Hebert. 1991. Mitochondrial DNA diversity in fishes and its implications for introductions. Can. J. Fish. Aquat. Sci., 48, 80-94. Brown, W.M., M. George Jr. and A.C. Wilson. 1979 Rapid evolution of animal mitochondrial DNA. Proc Natl. Acad. Sci. USA, 76, 1967-1971   DOI   ScienceOn
23 Knox, D. and E. Verspoor. 1991. A mitochondrial DNA restriction fragment length polymorphism of potential use for discrimination of farmed Norwegian and wild Atlantic salmon populations in Scotland. Aquaculture. 98, 249-257   DOI
24 Magoulas, A., K. Sophronides, T. Patamello E. Hatzilaris and E. Zouros. 1995. Mitochondrial DNA variation in an experimental stock of gilthead sea bream (Sparus aurata). Mol. Marine Biol. Biotech., 4, 110-116   DOI   ScienceOn
25 Billington, N. and P.D.N. Hebert. 1988. Mito-chondrial DNA variation in Great Lakes walleyε (Stizos tedion vitreum) populations. Can. J. Fish. Aquat. Sci., 45, 643-654   DOI
26 Gyllensten, U.B. and A.C. Wilson. 1987. Mitochondrial DNA of salmonids. In: N. Ryman and F. Utter (eds.), Population Genetics and Fisheries Management, University of Washington Press, Seattle, 301-307
27 Cross, T.F. and D.N. Challanain. 1991. Genetic characterisation of Atlantic salmon (Salmo salar) lines farmed in Ireland. Aquaculture, 98, 209-216   DOI
28 Zardoya, R., A. Garido-Pertierra and J.M. Baustista. 1995. The complete nucleotide sequence of the mitochondrial DNA genome of the rainbow trout, Onchorynchus mykiss. J. Mol. Evol., 41, 942-951   DOI   PUBMED
29 Taniguchi, N. and K. Sugama. 1990. Genetic variation and population structure of red sea bream in the coastal waters of japan and in the East China Sea. Nippon Suisan Gakkaishi, 56, 1069-1077   DOI