Browse > Article
http://dx.doi.org/10.5657/fas.2006.9.1.030

Uptake and Excretion of Dissolved Organic Phosphorus by Two Toxic Dinoflagellates, Alexandrium tamarense Lebour (Balech) and Gymnodinium catenatum Graham  

Oh Seok-Jin (Division of Bioresource and Bioenvironmental Science, Graduate School, Kyushu University)
Yamamoto Tamiji (Faculty of Applied Biological Science, Hiroshima University)
Yoon Yang-Ho (Faculty of Marine Technology, College of Ocean Science and Technology, Chonnam National University)
Publication Information
Fisheries and Aquatic Sciences / v.9, no.1, 2006 , pp. 30-37 More about this Journal
Abstract
We performed experiments on the uptake and excretion of dissolved organic phosphorus (DOP) using two toxic dinoflagellates, Alexandrium tamarense Lebour (Balech) and Gymnodinium catenatum Graham, isolated from Hiroshima Bay, Japan. ATP (adenosine triphosphate), UMP (uridine-5-monophosphate), G-6-P (glucose-6-phosphate) and Glycero-P (glycerophosphate) were used as DOP sources in preliminary uptake experiments. ATP was selected as the DOP species for the short-tenn uptake experiment because preliminary experiments showed it to be the DOP source used by both species. Although the $K_s$ values of A. tamarense and G. catenatum (5.63 and $7.61{\mu}M$, respectively) obtained from the short-term experiments for ATP were only slightly higher than those reported for dissolved inorganic phosphorus (DIP), the ${\rho}_{max}$ values (5.04 pmol/cell/h and 13.4 pmol/cell/h, respectively) were much higher. The DOP excretion rate in batch-culture experiments was estimated at 0.084 pmol/cell/h for A. tamarense and 0.012 pmol/cell/h for G. catenatum, accounting for about 30% and 25%, respectively, of the assimilated phosphorus. Our results suggest that the DIP-depleted conditions of Hiroshima Bay favor these two species by supporting their ability to use DOP.
Keywords
Alexandrium tamarense; Dissolved organic phosphorus; Excretion; Gymnodinium catenatum; Nutrient uptake;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Harrison, P.J., J.S. Parslow and H.L. Conway. 1989. Determination of nutrient uptake kinetic parameters: a comparison of methods. Mar. Ecol. Prog. Ser. 52, 301-312   DOI
2 Guillard, R.R.L. and P.E. Hargraves. 1993. Strichochrysis immobilis is a diatom, not a chrysophyte. Phycologia, 32, 234-236   DOI
3 Yamaguchi, M. and S. Itakura. 1999. Nutrition and growth kinetics in nitrogen- or phosphorus-limited cultures of the noxious red tide dinoflagellate Gymnodinium mikimotoi. Fish. Sci., 65, 367-373   DOI
4 Yamamoto, T. and K. Tarutani. 1997. Effects of temperature, salinity and irradiance on the growth of toxic dinoflagellate Alexandrium tamarense isolated from Hiroshima Bay, Japan. Jap. J. Phycol., 45, 95-101
5 Yamamoto, T., T. Seike, T. Hashimoto and K. Tarutani. 2002c. Modelling the population dynamics of the toxic dinoflagellate Alexandrium tamarense in Hiroshima Bay, Japan. J. Plankton Res. 24, 33-37   DOI   ScienceOn
6 Yamamoto, T. and K. Tarutani. 1999. Growth and phosphate uptake kinetics of the toxic dinoflagellate Alexandrium tamarense from Hiroshima Bay in the Seto Inland Sea, Japan. Phycol. Res., 47, 27-32   DOI   ScienceOn
7 Yamamoto, T., T. Hashimoto, K. Tsuji, O. Matsuda and K. Tarutani. 2002a. Spatial and temporal variations of biophilic elements in Hiroshima Bay, Japan, during 1991-2000, with special reference to the deviation of phytoplanktonic C : N : P ratio from the redfield ratio. Bull. Coast. Oceanogr., 39, 163-169
8 Yamamoto, T., S.J. Oh and Y. Kataoka. 2002b. Effect of temperature, salinity and irradiance on the growth of the toxic dinoflagellate Gymnodinium catenatum (Dinophyceae) isolated from Hiroshima Bay, Japan. Fish. Sci.,. 68, 356-363   DOI   ScienceOn
9 Yamamoto, T., S.J. Oh and U. Kataoka. 2004. Growth and uptake kinetics for nitrate, ammonia and phosphate by the toxic dinoflagellate Gymnodinium catenatum isolated from Hiroshima Bay, Japan. Fish Sci., 45, 108-115
10 Bjorkman, K. and D.M. Karl. 1994. Bioavailability of inorganic and organic phosphorus compounds to natural assemblages of microorganisms in Hawaiian coastal waters. Mar. Ecol. Prog. Ser., 111, 265-273   DOI
11 Egge, J.K. 1998. Are diatoms poor competitors at low phosphate concentrations? J. Mar. Sys., 16, 191-198   DOI   ScienceOn
12 Oh S.J. and Y.H. Yoon. 2004. Effects of water temperature, salinity and irradiance on the growth of the toxic dinoflagellate, Gymnodinium catenatum (Graham) isolated from Yeosuhae. Algae 19, 293-301   DOI   ScienceOn
13 Provasoli, L., K. Shiraishi and J.R. Lance. 1959. Nutritional idiosyncrasies of Artemia and Tigriopus in monoxenic culture. Ann. N.Y. Acad. Sci., 77, 250-261   DOI
14 Oh S.J., Y. Matsuyama T. Yamamoto, M. Nakajima., H. Takatsuzi and K. Hujisawa. 2005. Recent developments and causes of harmful dinoflagellate blooms in the Seto Inland Sea - Ecological importance of dissolved organic phosphorus (DOP). Bull. Coast. Oceanogr., 43, 85-95
15 Pomeroy, L.R., H.M. Mathews and H.S. Min. 1963. Excretion of phosphate and soluble organic phosphorus compounds by zooplankton. Limnol. Oceanogr., 8, 50-55   DOI   ScienceOn
16 Porter, K.G. and Y.S. Feig. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr., 25, 943-948   DOI   ScienceOn
17 Shan, Y, I.D. Mckelvie and B.T. Hart. 1994. Determination of alkaline phosphatase-hydrolyzable phosphorus in natural water systems by enzymatic flow injection. Limnol. Oceanogr., 39, 1993-2000   DOI   ScienceOn
18 Sharp, J.H. 1977. Excretion of organic matter by marine phytoplankton: Do healthy cells do it. Limnol. Oceanogr., 22, 381-399   DOI   ScienceOn
19 Strickland, J.D.H. and T.R. Parsons. 1972. A Practical Handbook of Seawater Analysis, 2nd ed. Bull. Fish. Res. Bd Canada, 167, 1-310
20 Suzumura, M. and K. Ishikawa. 1998. Characterization of dissolved organic phosphorus in coastal seawater using ultrafiltration and phosphohydrolytic enzymes. Limnol. Oceanogr., 43, 1553-1564   DOI   ScienceOn
21 Yamaguchi, M. 1999. Growth physiology of Heterocapsa circularisquama. Bull. Plankton Soc. Jap., 46, 171-172
22 Keller, M.D. R.C. Selvin, W. Claus and R.R.L. Guillard. 1987. Media for the culture of oceanic ultraphytoplankton. J. Phycol., 23, 633-638   DOI
23 Hodson, R.E., O. Holm-Hansen and F. Azam. 1976. Improved methodology for ATP determination in marine environments. Mar. Biol., 34, 143-149   DOI
24 Hodson, R.E., A.E. Maccubbin and L.R. Pomeroy. 1981. Dissolved adenosine triphosphate utilization by free-living and attached bacterioplankton. Mar. Biol., 64, 43-51   DOI
25 Jackson, G.A. and P.M. Williams. 1985. Important of dissolved organic nitrogen and phosphorus to biological nutrient cycling. Deep-Sea Res., 32, 223-235   DOI   ScienceOn
26 Kolowith, L.C., E.D. Ingall and R. Benner. 2001. Composition and cycling of marine organic phosphorus. Limnol. Oceanogr., 46, 309-320   DOI   ScienceOn
27 Koroleff, F. 1983. Determination of phosphorus. In: Methods of Sea Water Analysis. Grasshoff, K., M. Ehrhardt and K. Kremling, eds., Verlag Chemie, Weinheim, 162-173
28 Kuenzler, E.J. 1970. Dissolved organic phosphorus excretion by marine phytoplankton. J. Phycol., 6, 7-13
29 Lepo J.E. and O. Wyss. 1974. Depression of nitrogenase in Azotobacter. Biochem. Biophys. Res. Commun., 60, 76-80   DOI   ScienceOn
30 Monaghan, E.J. and K.C. Ruttenberg. 1999. Dissolved organic phosphorus in the coastal ocean: Reassessment of available methods and seasonal phosphorus profiles from the Eel River Shelf. Limnol. Oceanogr., 44, 1702-1714   DOI   ScienceOn
31 Cembella, A.D., N.J. Antia, and P.J. Harrison. 1984. The utilization of inorganic and organic phosphorus compounds as nutrients by eukaryotic microalgae: A multidisciplinary perspective: Part 1. CRC Critic. Rev. Microbiol., 10, 317-391
32 Oh S.J., T. Yamamoto, Y. Kataoka, O. Matsuda, Y. Matsuyama and Y. Kotani. 2002. Utilization of dissolved organic phosphorus by the two toxic dinoflagellates: Alexandrium tamarense and Gymnodinium catenatum (Dinophyceae). Fish. Sci. 68: 416-424   DOI   ScienceOn
33 Abe, H. 1985. Ouyo Sugaku Nyumon, Baifu Kan, Tokyo, 215pp
34 Beusekom, J.E.E. and U.H. Brockmann. 1998. Transformation of phosphorus in the Elbe estuary. Estuaries, 21, 518-526   DOI   ScienceOn
35 Clark, L.L., E.D. Ingall and R. Benner. 1998. Marine phosphorus is selectively remineralized. Nature, 393, 426   DOI   ScienceOn
36 Doblin, M.A., S.I. Blackburn and G.M. Hallegreff. 1999. Growth and biomass stimulation of the toxic dinoflagellate Gymnodinium catenatum (Graham) by dissolved organic substances. J. Exp. Mar. Biol. Ecol., 236, 33-47   DOI   ScienceOn
37 Francko, D.A. and R.G. Wetzel. 1982. The isolation of cyclic adenosine 3':5'-monophosphate (cAMP) from lakes of differing trophic status: Correlation with planktonic metabolic variables. Limnol. Oceanogr., 27, 27-38   DOI   ScienceOn
38 Francois, M. and M. Morel. 1987. Kinetics of nutrient uptake and growth in phytoplankton. J. Phycol., 23, 137-150
39 Hada, Y. 1967. Protozoan plankton of the inland sea, Setonaikai. I. The mastigophora. Bull. Suzugamine Woman's Coll., Nat. Sci., 13, 1-26
40 Guillard, R.R.L. and J.H. Ryther. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol., 8, 229-239   DOI   ScienceOn
41 Healy, F.P. 1980. Slope of the Monod equation as an indicator of advantage in nutrient competition. Microbiol. Ecol., 5, 281-286   DOI   ScienceOn