Browse > Article
http://dx.doi.org/10.5657/fas.2003.6.3.160

Mortality of Fishes and Shellfishes to Harmful Algal Blooms  

Lee Sam Geun (Marine, Harmful Organisms Division, National Fisheries Research and Development Institute)
Kim Hak Gyoon (Marine, Harmful Organisms Division, National Fisheries Research and Development Institute)
Cho Eun Seob (Marine, Harmful Organisms Division, National Fisheries Research and Development Institute)
Lee Chang Kyu (Marine, Harmful Organisms Division, National Fisheries Research and Development Institute)
Publication Information
Fisheries and Aquatic Sciences / v.6, no.3, 2003 , pp. 160-163 More about this Journal
Abstract
Mortality of several species of fish and shellfish exposed to Harmful Algal Blooms (HABs) caused by Cochlodinium polykrikoides, Heterosigam akashiwo, Alexandrium tamarense, Eutreptiella gymnastica, Heterocapsa triquetra and Prorocentrum micans was studied. When fish were exposed to a cell density of 8,000 cells $mL^{-1}$ in C. polykrikoides, $35\%$ of flatfish and darkbanded rockfish died within 48 hrs. However, jacopever rockfish had mortality of higher than $85\%$. Rock bream, filefish and red sea bream showed $100\%$ mortality within 10 hrs with an exposure cell density of 8,000 cells $mL^{-1}$. The rest of HABs except for C. polykrikoides showed that there was no fish and shellfish death throughout the 48 hrs even in the maximum cell density of 100,000 cells $mL^{-1}$ These results imply that C. polykrikoides can have a serious impact on fish mortality and it is regarded as an ichthyotoxic dinoflagellate. The fish death may be attributed to anoxia caused by a combination of the production of reactive oxygen species (ROS) and polysaccharide from C. polykrikoides during blooms.
Keywords
Cochlodinium polykrikoides; HABs; Mortality; ROS; Polysaccharide; Red tide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shimada, M., N. Akagi, H. Goto, M. Watanabe, H. Watanabe, M. Nakanishi, S. Yoshimatsu and C. Ono. 1991. Free radical production by the red tide alga, Chattonella antiqua. J. Histochem., 23, 361   DOI   ScienceOn
2 Shimada, M., S. Kawamoto, Y. Nakatsuka and M. Watanabe. 1993. Localization of superoxide anion in the red tide alga Chattonella antiqua. J. Histo. Cyto., 41, 507-511   DOI   ScienceOn
3 Tanaka, K., M. Yoshinori and M. Shimada. 1994. Generation of superoxide anion radicals by the marine phytoplankton organism, Chattonella antiqua. J. Plank. Res., 16, 161-169   DOI   ScienceOn
4 Tanaka, K., S. Yoshimatsu and M. Shimada. 1992. Generation of superoxide anions by Chattonella antiqua: Possible causes for fish death caused by red tide. Experientia, 48, 888-890   DOI   ScienceOn
5 Tyrrell, J.V., P.R. Bergquist, R.D. Gray, L. Mackenzie and P.L. Bergquist. 1996. Phylogeny of the Raphi-dophytes Heterosigma carterae and Chattonella antiqua using V4 domain SSU rDNA sequences. Bio. Syst. Ecol., 24, 221-235   DOI   ScienceOn
6 Kim, C.S., S.G. Lee, C.K. Lee, H.G. Kim and J. Jung. 1999. Feactive oxygen species as causative agents in the ichthyotoxicity of the red tide dinoflagellate Cochlodinium po lykriko ides . J. Plank. Res., 21, 2105-2115   DOI
7 Montoya, N.G. , R. Akselman, J. Franco and J.I. Carreto. 1996. Paralytic shellfish toxins and mackerel (Scomber japonicus) mortality in the Argentine Sea. In: Harmful and Toxic Algal Blooms. Yasumoto, T., Y. Oshima and Y. Fukuyo, eds. Intergovernmental Oceano-graphic Commission of UNESCO, pp. 15-18
8 Kim, H.G. , S.G. Lee and K.H. An. 1996. Interannual changes in Heterosigma akashiwo blooms in Korean coastal waters. Bull. Nat'l. Fish. Res. Dev. Inst. Korea, 52, 1-14. (in Korean)
9 Kim, H.G. , S.G. Lee, K.H. An. 1997. Recent red tides in Korean coastal waters. Nat'l. Fish. Res. Dev. Inst. Korea, Kudeok, Busan, pp. 280. (in Korean)
10 Mackenzie, L. 1991. Toxic and noxious phytoplankton in Big 310ry Bay, Stewart Island, New Zealand. J. Appl. Phycol., 3, 19-34   DOI
11 Oda, T., A. Ishimatsu, M. Shimada, S. Takeshita and T. Muramatsu. 1992. Oxygen-radical-mediated toxic effects of the red tide flagellate Chattonella marina on Vibrio alginolyticus. Mar. Biol., 112, 505-509   DOI
12 Onoue, y. and K. Nozawa. 1989a. Zinc-bound PSP toxins separated from Cochlodinium red tide. In: Red tides; Bilogy, Environmental Science and Toxicology. Okaichi T., D. Anderson and T. Nemoto, eds. Elsevier Science Publishing, New York, 359-366
13 Onoue, Y. and K. Nozawa. 1989b. Separation of toxins from harmful red tides occurring along the coast of Kagoshima prefecture. In: Red tides; Bilogy, Environmental Science and Toxicology. Okaichi, T.,D. Anderson and T. Nemoto, eds. Elsevier Science Publishing, New York, 371-374
14 Hasui, M., M. Matsuda and K. Okutani. 1995. In vitro antiviral activities of sulfated polysaccharides from a marine microalga (Cochlodinium polykrikoides) against human immunodeficiency virus and other enveloped viruses. Int. J. BioI. Macro., 17, 293-297   DOI   ScienceOn
15 Chang, F.H., C. Anderson and N.C. Boustead. 1990. First record of Heterosigma (Raphidophyceae) bloom with associated mortality of cage salmon in Big Glory Bay, New Zealand. New Zealand J. Mar. Fresh. Wat. Res., 24, 461-469   DOI
16 Cho, E.S., C.S. Kim, S.G. Lee and Y.K. Chung. 1999. Binding of Alcian blue applied to harmful microalgae from Korean coastal waters. Bull. Nat'l. Fish. Res. Dev. Inst. Korea, 55, 133-138
17 Hallegraeff, G.M., D.M. Anderson and A.D. Cembella. 1995. Manual on Harmful Marine Microalgae. Intergovernmental Oceanographic Commission(of UNESCO), pp. 551