Browse > Article
http://dx.doi.org/10.1007/s11814-018-0126-5

Valorization of galactose into levulinic acid via acid catalysis  

Kim, Hyo Seon (Department of Biotechnology, Pukyong National University)
Jeong, Gwi-Taek (Department of Biotechnology, Pukyong National University)
Publication Information
Korean Journal of Chemical Engineering / v.35, no.11, 2018 , pp. 2232-2240 More about this Journal
Abstract
We applied methanesulfonic acid (MSA) as a green catalyst to produce levulinic acid (LA) from monomeric sugars. To optimize reaction factors and assess the effect of reciprocal interactions, a statistical experimental design was applied. Optimized result of 40.7% LA yield was obtained under the following conditions: 60 g/L galactose, 0.4 M MSA at $188^{\circ}C$ for 26.7 min. On the other hand, 66.1% LA yield was achieved under 60 g/L fructose and 0.4 M MSA at $188^{\circ}C$ for 36 min conditions. For the effect of combined severity factor on the LA yield from galactose, the LA yield showed a peaked pattern, which was linearly increased until a CSF 3.2 and then diminished with a high CSF. Moreover, it was closely fitted to a non-linear Gaussian peak pattern with a high regression value of 0.989. These results suggest that MSA and galactose, derived from marine red macro-algae, can potentially be applied for the conversion into platform chemicals.
Keywords
Levulinic Acid; Galactose; Methanesulfonic Acid-catalyzed Hydrothermal Conversion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. D. Gernon, M. Wu, T. Buszta and P. Janney, Green Chem., 1, 127 (1999).   DOI
2 L. D. Mthembu, Durban University of Technology, Durban, South Africa, Master Thesis (2015).
3 G. T. Jeong and D. H. Park, Appl. Biochem. Biotechnol., 161, 41 (2010).   DOI
4 D. Scordia, S. L. Cosentino and T. W. Jeffries, Biomass Bioenerg., 59, 540 (2013).   DOI
5 S. B. Lee, S. K. Kim, Y. K. Hong and G. T. Jeong, Algal Res., 13, 303 (2016).   DOI
6 G. R. Akien, L. Qi and I. T. Horvath, Chem. Commun., 48, 5850 (2012).   DOI
7 A. Mija, J. C. van der Waal, J.-M. Pin, N. Guigo and E. de Jong, Constr. Build. Mater., 139, 594 (2017).   DOI
8 N. Ya’aini, N. A. S. Amin and S. Endud, Micropor. Mesopor. Mater., 171, 14 (2013).   DOI
9 H. Rasmussen, H. R. Sorensen and A. S. Meyer, Carbohydr. Res., 385, 45 (2014).   DOI
10 E. Percival, Br. Phycol. J., 14, 103 (1979).   DOI
11 S. De, S. Dutta and B. Saha, Green Chem., 13, 2859 (2011).   DOI
12 T. S. Hansen, J. Mielby and A. Riisager, Green Chem., 13, 109 (2011).   DOI
13 X. Hu, L. Wu, Y. Wang, Y. Song, D. Mourant, R. Gunawan, M. Gholizadeh and C. Z. Li, Bioresour. Technol., 133, 469 (2013).   DOI
14 Y. Yang, C. W. Hu and M. M. Abu-Omar, Bioresour. Technol., 116, 190 (2012).   DOI
15 D. H. Kim, S. B. Lee, S. K. Kim, D. H. Park and G. T. Jeong, Bioenerg. Res., 9, 1155 (2016).   DOI
16 H. S. Kim, S. K. Kim and G. T. Jeong, J. Ind. Eng. Chem., 63, 48 (2018).   DOI
17 M. R. Park, S. K. Kim and G. T. Jeong, Algal Res., 31, 116 (2018).   DOI
18 B. Kamm, P. R. Gruber and M. Kamm, Biorefineries - Industrial Processes and Products, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2010).
19 H. S. Kim, M. R. Park, S. K. Kim and G. T. Jeong, Korean J. Chem. Eng., 35, 1290 (2018).   DOI
20 J. J. Bozell and G. R. Petersen, Green Chem., 12, 539 (2010).   DOI
21 T. Werpy and G. Petersen, NREL/TP-510-35523, National Renewable Energy Laboratory, Golden, CO (2004).
22 A. Mukherjee, M.-J. Dumont and V. Raghavan, Biomass Bioenergy, 72, 143 (2015).   DOI
23 R. J. Putten, J. C. Waal, E. Jong, C. B. Rasrendra, H. J. Heeres and J. G. Vries, Chem. Rev., 113, 1499 (2013).   DOI
24 A. Morone, M. Apte and R. A. Pandey, Renew. Sust. Energy Rev., 51, 548 (2015).   DOI
25 G. T. Jeong, C. H. Ra, Y. K. Hong, J. K. Kim, I. S. Kong, S. K. Kim and D. H. Park, Bioprocess Biosyst. Eng., 38, 207 (2015).   DOI
26 D. J. Hayes, S. Fitzpatrick, M. H. B. Hayes and J. R. H. Ross, in Biorefineries - Industrial Processes and Products, B. Kamm, P. R. Gruber and M. Kamm Eds., WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2008).
27 D. W. Rackemann and W. O. S. Doherty, Biofuels, Bioprod. Bioref., 5, 198 (2011).   DOI
28 H. Zang, S. Yu, P. Yu, H. Ding, Y. Du, Y. Yang and Y. Zhang, Carbohyd. Res., 442, 1 (2017).   DOI
29 M. R. Park, H. S. Kim, S. K. Kim and G. T. Jeong, Fuel Process. Technol., 172, 115 (2018).   DOI
30 K. W. Omari, J. E. Besaw and F. M. Kerton, Green Chem., 14, 1480 (2012).   DOI
31 D. W. Rackemann, J. P. Bartley and W. O. S. Doherty, Ind. Crop. Prod., 52, 46 (2014).   DOI
32 Y. Wang, C. M. Pederson, T. Deng, Y. Qiao and X. Hou, Bioresour. Technol., 143, 384 (2013).   DOI
33 M. D. N. Meinita, J. Y. Kang, G. T. Jeong, H. M. Koo, S. M. Park and Y. K. Hong, J. Appl. Phycol., 24, 857 (2012).   DOI