Browse > Article
http://dx.doi.org/10.1007/s11814-018-0136-3

Sorption-enhanced reforming of tar: Influence of the preparation method of CO2 absorbent  

Xie, Huaqing (School of Metallurgy, Northeastern University)
Zhang, Weidong (School of Metallurgy, Northeastern University)
Zhao, Xiangnan (School of Metallurgy, Northeastern University)
Chen, Hao (School of Metallurgy, Northeastern University)
Yu, Qingbo (School of Metallurgy, Northeastern University)
Qin, Qin (School of Metallurgy, Northeastern University)
Publication Information
Korean Journal of Chemical Engineering / v.35, no.11, 2018 , pp. 2191-2197 More about this Journal
Abstract
To remove tar and produce environment-friendly $H_2$, one of the promising routes is the sorption-enhanced steam reforming (SESR) process, in which the $CO_2$ sorbent is a key element. We prepared the $CO_2$ sorbents with $Ca_{12}Al_{14}O_{33}$ as carrier with various methods. Their characterizations were examined, and the sample prepared by solgel (SG) method showed the strongest CaO and $Ca_{12}Al_{14}O_{33}$ phases and the most excellent pore structure among all the samples. Then, a thermogravimetric experiment was conducted, and the results showed that the sample prepared by sol-gel (SG) method had the best $CO_2$ adsorption capacity and excellent long-term cyclic stability. Finally, the sorbent was used into the steam reforming experiments of tar. Under the action of the sorbent, the reforming reaction was enhanced in-situ, with the $H_2$ yield and concentration improved obviously, and especially, $H_2$ concentration can reach over 98.85%.
Keywords
Steam Reforming; Tar Removal; Hydrogen Production; $CO_2$ Sorbent; $Ca_{12}Al_{14}O_{33}$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Q. Xie, Q. B. Yu, Z. L. Zuo, J. R. Zhang, Z. C. Han and Q. Qin, J. Therm. Anal. Calorim., 126, 1621 (2016).   DOI
2 B. Yue, X. Wang, X. Ai, J. Yang, L. Li, X. Lu and W. Ding, Fuel Process. Technol., 91, 1098 (2010).   DOI
3 J. L. Colby, T. Wang and L. D. Schmidt, Energy Fuels, 24, 1341 (2010).   DOI
4 R. Zhang, Y. Wang and R. C. Brown, Energy Convers. Manage., 48, 68 (2007).   DOI
5 H. Q. Xie, J. R. Zhang, Q. B. Yu, Z. L. Zuo, J. L. Liu and Q. Qin, Energy Fuels, 30, 2336 (2016).   DOI
6 C. Li, D. Hirabayashi and K. Suzuki, Fuel Process. Technol., 90, 790 (2009).   DOI
7 T. Furusawa and A. Tsutsumi, Appl. Catal. A-Gen., 278, 195 (2005).   DOI
8 D. Swierczynski, C. Courson and A. Kiennemann, Chem. Eng. Process.: Process Intensif., 47, 508 (2008).   DOI
9 W. B. Widayatno, G. Guan, J. Rizkiana, X. Hao, Z. Wang, C. Samart and A. Abudula, Fuel, 132, 204 (2014).   DOI
10 J. Yang, X. G. Wang, L. Li, K. Shen, X. G. Lu and W. Z. Ding, Chem. J. Chinese Univ., 31, 1841 (2010).
11 H. Q. Xie, Q. B. Yu, Z. L. Zuo, Z. C. Han, X. Yao and Q. Qin, Int. J. Hydrogen Energy, 41, 2345 (2016).   DOI
12 Z. Yang, Y. Zhang, W. Ding, Y. Zhang, P. Shen, Y. Zhou, Y. Liu, S. Huang and X. Lu, J. Nat. Gas Chem., 18, 407 (2009).   DOI
13 H. Q. Xie, Q. B. Yu, X. Yao, W. J. Duan, Z. L. Zuo and Q. Qin, J. Energy Chem., 24, 299 (2015).   DOI
14 C. Li, D. Hirabayashi and K. Suzuki, Appl. Catal. B Enviorn., 88, 351 (2009).   DOI
15 C. M. Kinoshita and S. Q. Turn, Int. J. Hydrogen Energy, 28, 1065 (2003).
16 B. L. Dou, C. Wang, Y. C. Song, H. S. Chen, B. Jiang, M. J. Yang and Y. J. Xu, Renew. Sust. Energy Rev., 53, 536 ( 2016).   DOI
17 A. L. Ortiz and D. P. Harrison, Ind. Eng. Chem. Res., 40, 5102 (2001).   DOI
18 C. S. Martavaltzi and A. A. Lemonidou, Micropor. Mesopor. Mater., 110, 119 (2008).   DOI
19 H. Q. Xie, Q. B. Yu, M. Q. Wei, W. J. Duan, X. Yao, Q. Qin and Z. L. Zuo, Int. J. Hydrogen Energy, 40, 142 (2015).
20 H. Q. Xie, Q. B. Yu, H. Lu, Y. Y. Zhang, J. R. Zhang and Q. Qin, Int. J. Hydrogen Energy, 42, 28718 (2017).   DOI
21 I. Zamboni, C. Courson and A. Kiennemann, Catal. Today, 176, 197 (2011).   DOI
22 J. Blamey, E. J. Anthony, J. Wang and P. S. Fennell, Prog. Energy Combust. Sci., 36, 260 (2010).   DOI
23 M. M. Xie, Z. M. Zhou, Y. Qi, Z. M. Cheng and W. K. Yuan, Chem. Eng. J., 207-208, 142 (2012).   DOI
24 Z. M. Zhou, Y. Qi, M. M. Xie, Z. M. Cheng and W. K. Yuan, Chem. Eng. Sci., 74, 172 (2012).   DOI
25 C. S. Martavaltzi and A. A. Lemonidou, Ind. Eng. Chem. Res., 47, 9537 (2008).   DOI
26 E. C. Vagia and A. A. Lemonidou, Appl. Catal. A: Gen., 351, 111 (2008).   DOI
27 F. Chen, Y. R. Hong, J. L. Sun and J. L. Bu, J. Univ. Sci. Technol. Beijing, 13, 82 (2006).   DOI
28 Z. S. Li, N. S. Cai, Y. Y. Huang and H. J. Han, Energy Fuels, 9, 1447 (2005).
29 I. Zamboni, C. Courson and A. Kiennemann, Catal. Today, 176, 197 (2011).   DOI
30 L. Gong, Z. Lin, S. Ning, J. Sun, J. Shen, Y. Torimoto and Q. Li, Mater. Lett., 64, 1322 (2010).   DOI
31 H. Q. Xie, Q. B. Yu, J. R. Zhang, J. L. Liu, Z. L. Zuo, J. L. Liu and Q. Qin, Environ. Prog. Sust. Energy, 36, 729 (2017).   DOI
32 N. B. Gao, S. Liu, Y. Han, C. Xing and A. M. Li, Int. J. Hydrogen Energy, 40, 7983 (2015).   DOI
33 C. P. B. Quitete, R. C. P. Bittencourt and M. M. V. M. Souza, Appl. Catal. A-Gen., 478, 234 (2014).   DOI
34 J. Yang, X. Wang, L. Li, K. Shen, X. Lu and W. Ding, Appl. Catal. B Enviorn., 96, 232 (2010).   DOI