Browse > Article
http://dx.doi.org/10.1007/s11814-015-0210-z

Fuel characteristics of agropellets fabricated with rice straw and husk  

Yang, In (Department of Wood and Paper Science, Chungbuk National University)
Kim, Seong-ho (Department of Wood and Paper Science, Chungbuk National University)
Sagong, Moon (Shin Heung Industry Co., Ltd.)
Han, Gyu-Seong (Department of Wood and Paper Science, Chungbuk National University)
Publication Information
Korean Journal of Chemical Engineering / v.33, no.3, 2016 , pp. 851-857 More about this Journal
Abstract
Our aim was to identify the potential of rice straw (RS) and rice husk (RH) as raw materials for pellet production. Compared to woody biomass, RS and RH can be easily dried, but contain significant levels of ash. Higher heating values of oven-dried RS and RH are slightly lower than those of commercial wood pellets. RS and RH contain substantially more silicon, potassium and calcium than larch sawdust. However, ash and moisture contents of RS was significantly reduced following a 15-week exposure period on rice paddy. These results suggest that RS and RH present suitable alternatives to wood as raw materials for pellet production due to their availability, relatively high calorific value and low moisture content. The durability of RS and RH pellets improved steadily with increasing pelletizing temperature and time. Pelletization under appropriate conditions also enabled the durability and bulk density of RS and RH to be improved, enhancing their potential as alternative combustion fuels.
Keywords
Rice Straw; Rice Husk; Pellet; Ash Content; Outdoor Exposure;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. Hui, Comparison of woody pellets, straw pellets, and delayed harvest system herbaceous biomass (switchgrass and miscanthus): Analysis of current combustion techniques determining the value of biomass, http://edepot.wur.nl/192415 (2013).
2 European Committee for Standardization, Solid biofuels - Fuel specification and classes - Part 6: Nonwoody pellets for non-industrial use, European Standards EN 14961-6, Brussels (2012).
3 R. H. White, Wood and Fiber Sci., 19(4), 450 (1987).
4 T.K. Dhamodaran, R. Gnanaharan and P.K. Thulasidas, Wood Sci. Technol., 23, 24 (1989).
5 T. Cordero, F. Marquez, J. Rodriguez-Mirasol and J. Rodriguez, Fuel, 80, 1569 (2001).
6 F. Lu and J. Ralph, Cereal straws as a resource for sustainable biofuels and biomaterials, R. C. Sun Ed., Elsevier, Amsterdam (2010).
7 N. Said, M. M. Abdel, A. Garcia-Maraver and M. Zamorano, Bioresources, 9(4), 6756 (2014).
8 B. J. Ahn, H. Chang, S.M. Lee, D.H. Choi, S.T. Cho, G.S. Han and I. Yang, Renewable Eng., 62, 22 (2014).
9 C. Boman, M. Ohman and A. Nordin, Energy Fuels, 20, 993 (2006).   DOI
10 B. M. Jenkins, L. L. Baxter, T.R. Miles, Jr. and T.R. Miles, Fuel Processing Technol., 54, 27 (1998).
11 B. Hillring and J. Vinterback, For. Prod. J., 48, 68 (1998).
12 International Wood Market Groups, Monthly International Report - Wood Pellets Markets/Trends, http://www.unecefaoiufro.lsu.edu/marketing/documents/2010/gme10_03.pdf, Vancouver (2010).
13 S. B. McLaughlin and M. E. Walsh, Biomass Bioenergy, 14, 318 (1998).
14 D. J. Parrish and J. H. Fike, Crit. Rev. Plant Sci., 24, 424 (2005).
15 Y. H. Kim, B. I. Na, B. J. Ahn, H.W. Lee and J.W. Lee, Korean J. Chem. Eng., 32(8), 1547 (2015).
16 W. Stelte, J. K. Holm, A.R. Sanadi, S. Barsberg, J. Ahrenfeldt and U. B. Henriksen, Biomass Bioenergy, 35, 911 (2011).
17 I. Obernberger and G. Thek, Biomass Bioenergy, 27, 659 (2004).
18 Korean Statistical Information Service, Rice production, http://kosis.kr/nsieng/view/Stat10. do, Daejeon (2013).
19 National Renewable Energy Laboratory, Determination of ash in biomass, Technical Report of NREL/TP-510-42622, Golden (2008).
20 R. Govett, T. Mace and S. Bowe, A practical guide for the determination of moisture content of woody biomass, http://dnr.wi.gov/topic/ForestBusinesses/documents/BiomassMoistureContent.pdf, Madison (2010).
21 Association of Official American Chemists, Analytical methods for chemical composition, Academic Press, Arlington (1990).
22 C. Goncalves, H. Tran, S. Braz, F. Puig and R. Shenassa, Pulp Paper Canada, 109(3), 34 (2008).
23 National Renewable Energy Laboratory, Determination of structural carbohydrates and lignin in biomass, Technical Report of NREL/TP-510-42618, Golden (2011).
24 R. Samson, S. Mani, R. Boddey, S. Sokhansanj, D. Quesada, S. Urquiaga, V. Reis and C. H. Lem, Crit. Rev. Plant Sci., 24, 482 (2005).
25 A. Demirbas, Eng. Sources, 25(7), 684 (2003).
26 Korea Forest Research Institute, Standard for the quality of wood pellets, Seoul (2013).
27 D.W. Kim, J.M. Lee, J. S. Kim and P.K. Seon, Korean Chem. Eng. Res., 48, 60 (2010).
28 S. M. Lee, B. J. Ahn, D. H. Choi, G. S. Han, H. S. Jeong, S. H. Ahn and I. Yang, Biomass Bioenergy, 48, 7 (2013).
29 N. Kaliyan and R. V. Morey, Biomass Bioenergy, 33, 342 (2009).
30 European Committee for Standardization, Specification of wood pellets for non-industrial use, European Standards EN 14961-2, Brussels (2010).