Browse > Article
http://dx.doi.org/10.1007/s11814-012-0084-2

Performance of a coal gasification pilot plant with hot fuel gas desulfurization  

Kang, Suk-Hwan (Plant Engineering Center, Institute for Advanced Engineering (IAE))
Lee, Seong-Jong (Plant Engineering Center, Institute for Advanced Engineering (IAE))
Jung, Woo-Hyun (Plant Engineering Center, Institute for Advanced Engineering (IAE))
Chung, Seok-Woo (Plant Engineering Center, Institute for Advanced Engineering (IAE))
Yun, Yongseung (Plant Engineering Center, Institute for Advanced Engineering (IAE))
Jo, Sung-Ho (Korea Institute of Energy Research)
Park, Young Cheol (Korea Institute of Energy Research)
Baek, Jeom-In (Korea Electric Power Research Institute)
Publication Information
Korean Journal of Chemical Engineering / v.30, no.1, 2013 , pp. 67-72 More about this Journal
Abstract
A coal gasification pilot plant operation with hot fuel gas desulfurization (HGD) was performed taking two coals (Indonesian ABK and MSJ) that differ in their carbon and sulfur contents. A dry-feeding entrained-bed type gasifier was used for gasification with oxygen and capable of operating at 30 bar pressure and $1,550^{\circ}C$. The HGD unit consisted of a transport desulfurizer, a bubbling regenerator and a multi-cyclone. Attention was focused on attaining high carbon conversion and cold gas efficiency in the entrained bed reactor and the sulfur removal efficiency of the hot fuel gas desulfurization unit. The optimum conditions for achieving high performance of the operation are reported.
Keywords
Entrained Bed Coal Gasification; Hot Fuel Gas Desulfurization; Bituminous Coals of Indonesia;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. C. Park, S.-H. Jo, H.-J. Ryu, J.-H. Moon, C.-K. Yi, Y.-S. Yoon and J.-I. Baek, Korean J. Chem. Eng., DOI:10.1007/s11814-012- 0059-3 (2012).
2 S.K. Gangwal, R. Gupta and W. J. McMichael, Heat Recovery Systems CHP., 15, 205 (1995).   DOI   ScienceOn
3 C. K. Yi and J. E. Son, Adv. Powder Technol., 21, 119 (2010).   DOI   ScienceOn
4 Y. S. Yun, Y. D. Yoo and S.W. Chung, Fuel Process. Technol., 88, 107 (2007).   DOI   ScienceOn
5 X. Guo, Z. Dai, X. Gong, X. Chen, H. Liu, F. Wang and Z. Yu, Fuel Process. Technol., 88, 451 (2007).   DOI   ScienceOn
6 Y. S. Yun and Y. D. Yoo, Korean J. Chem. Eng., 18, 679 (2001).   DOI   ScienceOn
7 P. Mondal, G. S. Dang and M. O. Garg, Fuel Process. Technol., 92, 1395 (2011).   DOI   ScienceOn
8 J. Fermoso, B. Arias, M.V. Gil, M.G. Plaza, C. Pevida, J. J. Pis and F. Rubiera, Bioresour. Technol., 101, 3230 (2010).   DOI   ScienceOn
9 P. Mondal, G. S. Dang and M. O. Garg,$23^{rd}$National Convention of Chemical Engineers on Recent trends in Chemical Engineering, IIT Roorkee (2007).
10 G. J. Stiegel, IGCC Status, U.S., Proceedings: IGCC Workshop, New Delhi (2006).
11 D. Jones, D. Bhattacharyya, R. Turton and S. E. Zitney, Fuel Process. Technol., 92, 1685 (2011).   DOI   ScienceOn
12 T. Ogi, M. Nakanishi, Y. Fukuda and K. Matsumoto, Fuel, In press (2010).
13 M. Schingnitz, H. Brandt, F. Berger, P. Gohler and H. Kretschmer, Fuel Process. Technol., 16, 289 (1987).   DOI   ScienceOn
14 X. Guo, Z. Dai, X. Gong, X. Chen, H. Liu, F. Wang and Z. Yu, Fuel Process. Technol., 88, 451 (2007).   DOI   ScienceOn
15 A. Giuffrida, M.C. Romano and G.G. Lozza, Appl. Energy, 87, 3374 (2010).   DOI   ScienceOn