Browse > Article
http://dx.doi.org/10.1007/s11814-010-0467-1

Separation of tetrahydrofuran and water using pressure swing distillation: Modeling and optimization  

Lee, Ji-Hwan (Department of Chemical Engineering, Dongguk University)
Cho, Jung-Ho (Department of Chemical Engineering, Kongju National University)
Kim, Dong-Min (Department of Materials Science and Engineering, Hongik University)
Park, Sang-Jin (Department of Chemical Engineering, Dongguk University)
Publication Information
Korean Journal of Chemical Engineering / v.28, no.2, 2011 , pp. 591-596 More about this Journal
Abstract
Computer simulations were performed to obtain highly pure tetrahydrofuran (THF) with over 99.9 mole% from the mixture of THF and water. Pressure swing distillation (PSD) was used since the azeotropic point between tetrahydrofuran and water can be varied with pressure. A commercial process simulator, PRO/II with PROVISION release 8.3, was used for the simulation studies. The Wilson liquid activity coefficient model was used to simulate the low pressure column, and the Peng-Robinson equation of state model was added to correct the vapor phase non-idealities for the modeling of the high pressure column. The most optimal reflux ratios and the most optimal feed stage locations that could minimize the total reboiler heat duties were determined.
Keywords
Pressure Swing Distillation; Tetrahydrofuran; Computer Simulation; Liquid Activity Coefficient Mode; Equation of State;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 R. H. Perry and D.W. Green, Perry's Chemical Engineers' Handbook, McGraw-Hill, New York (1997).
2 J. P. Knapp and M. F. Doherty, Ind. Eng. Chem. Res., 31, 346 (1992).   DOI
3 H. E. Roscoe and W. Dittmar, J. Chem. Soc., 12, 128 (1859).
4 H. E. Roscoe, J. Chem. Soc., 13, 146 (1860).
5 W. K. Lewis, US Patent, 1,676,700, July 10 (1928).
6 J. Gmehling and R. Boelts, J. Chem. Eng. Data, 41, 202 (1996).   DOI   ScienceOn
7 Repke et al., Chem. Eng. Res. Design, 85, 492 (2007).   DOI   ScienceOn
8 A. Klein and J.-U. Repke, Asia-Pac. J. Chem. Eng., 4, 893 (2009).   DOI   ScienceOn
9 G. Modla and P. Lang, Chem. Eng. Sci., 63, 2856 (2008).   DOI   ScienceOn
10 Modla et al., Chem. Eng. Sci, 65, 870 (2010).   DOI   ScienceOn
11 Modla and Lang, Ind. Eng. Chem. Res., 49, 3785 (2010).   DOI   ScienceOn
12 W. L. Luyben, Ind. Eng. Chem. Res., 44, 5715 (2005).   DOI   ScienceOn
13 W. L. Luyben, Ind. Eng. Chem. Res., 47, 2696 (2008).   DOI   ScienceOn
14 W. L. Luyben, Ind. Eng. Chem. Res., 47, 2681 (2008).   DOI   ScienceOn
15 J. R. Phimister and W. D. Seider, Ind. Eng. Chem. Res., 39, 122 (2000).   DOI   ScienceOn
16 S. Ray, N. R. Singha and S. K. Ray, Chem. Eng. J., 149, 153 (2009).   DOI   ScienceOn
17 J. H. Cho, J. K. Park and J. K. Jeon, J. Ind. Eng. Chem., 12(2), 206 (2006).
18 J. H. Cho and J. K. Jeon, Korean J. Chem. Eng., 23(1), 1 (2006).   DOI   ScienceOn
19 G. Soave, Chem. Eng. Sci., 35, 1197 (1972).
20 D.Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fundam., 15, 58 (1976).
21 M. H. Holmes and M. van Winkle, Ind. Eng. Chem., 62(1), 21 (1970).   DOI
22 R.V. Orye and J.M. Prausnitz, Ind. Eng. Chem., 57(5), 18 (1965).   DOI   ScienceOn
23 G. M. Wilson, J. Amer. Chem. Soc., 86, 127 (1964).   DOI
24 H. Renon and J. M. Prausnitz, J. Amer. Chem. Soc., 14, 135 (1968).
25 J. A. Nelder and J. D. Mead, Comput. J., 7, 308 (1965).   DOI
26 R. Munoz, J. B. Monton, M. C. Burguet and J. de la Torre, Sep. Pur. Technol., 50, 175 (2006).   DOI   ScienceOn