Browse > Article
http://dx.doi.org/10.1007/s11814-010-0079-9

Breakthrough data analysis of adsorption of volatile organic compounds on granular activated carbon  

Oh, Kwang-Joong (Division of Chemical Engineering, Pusan National University)
Park, Dae-Won (Division of Chemical Engineering, Pusan National University)
Kim, Seong-Soo (School of Environmental Science, Catholic University of Pusan)
Park, Sang-Wook (Division of Chemical Engineering, Pusan National University)
Publication Information
Korean Journal of Chemical Engineering / v.27, no.2, 2010 , pp. 632-638 More about this Journal
Abstract
Volatile Organic Compounds (VOCs) such as methanol, ethanol, methyl ethyl keton, benzene, n-propanol, toluene, and o-xylene were adsorbed in a laboratory-scale packed-bed adsorber using granular activated carbon (GAC) at 101.3 kPa. The adsorber was operated batchwise to obtain the breakthrough curves of VOCs under the adsorption conditions such as adsorption temperatures (298-323 K), flow rates of nitrogen ($60{\times}10^{-6}$-$150{\times}10^{-6}m^3/min$), GAC amount of 0.002 kg, and concentration of VOCs (3,000-6,000 ppmv). The adsorption kinetics was obtained by fitting the experimental breakthrough data to the deactivation model, combining the adsorption of VOCs and the deactivation of GAC. The adsorption isotherm, and adsorbed amount and adsorption heat of VOCs were obtained using the breakthrough curve: the former for comparison with the conventional isotherm models, the latter for correlation with the physical properties of VOCs.
Keywords
Adsorption; VOCs; Activated Carbon; Breakthrough Curve; Deactivation Model;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 N. Orbey, G. Dogu and T. Dogu, Can. J. Chem. Eng., 60, 314 (1982).   DOI
2 S. Yasyerli, T. Dogu, G. Dogu and I. Ar, Chem. Eng. Sci., 51, 2523 (1996).   DOI   ScienceOn
3 S.W. Park, B. S. Choi and J.W. Lee, Sep. Sci. Technol., 42, 2221 (2007).   DOI   ScienceOn
4 R. T. Yang, Gas separation by adsorption processes, Butterworth, Boston (1987).
5 M. Suzuki, Adsorption engineering, Kodansga Ltd., Tokyo (1990).
6 J.K. Lim, S.W. Lee, S.K. Kim, D. K. Lee and M.G. Lee, J. Environmental Sci., 14, 61 (2005).   DOI   ScienceOn
7 R. C. Reid, J. M. Prausnitz and B. E. Poling, The properties of gases & liquids, 4th Ed., McGraw-Hill Book Co., New York (1987).
8 D. Kim, W.G. Shim and H. Moon, Korean J. Chem. Eng., 18(4), 518 (2001).   DOI   ScienceOn
9 D.W. Ruthven, Principles of adsorption and adsorption processes, John & Wiley, New York (1984).
10 L.K. Doraiswamy and M. M. Sharma, Heterogeneous reactions, John Wiley & Sons, New York (1954).
11 Y. Suyadal, M. Erol and M. Oguz, Ind. Eng. Chem. Res., 39, 724 (2000).   DOI   ScienceOn
12 T. Kopac and S. Kocabas, Chem. Eng. Comm., 190, 1041 (2003).   DOI   ScienceOn
13 S.W. Park, D. H. Sung B. S. Choi and K.W. Oh, Sep. Sci. Technol., 41, 2665 (2006).   DOI   ScienceOn
14 T. Dogu, Am. Inst. Chem. Eng. J., 32, 849 (1986).   DOI   ScienceOn
15 S.W. Park, D. H. Sung, B. S. Choi, J.W. Lee and H. Kumazawa, J. Ind. Eng. Chem., 12, 522 (2006).
16 K. S. Hwang, S.W. Park, D.W. Park, K. J. Oh and S. S. Kim, Korean J. Chem. Eng., 26(4) (2009).