Browse > Article
http://dx.doi.org/10.1007/s11814-008-0091-5

Application of spent sulfidic caustics for autotrophic denitrification in a MLE process and their microbial characteristics by fluorescence in situ hybridization  

Park, Jeung-Jin (Department of Environmental Engineering, Pusan National University)
Park, So-Ra (Department of Environmental Engineering, Pusan National University)
Ju, Dong-Jin (Department of Environmental Engineering, Pusan National University)
An, Jeong-Keun (Department of Environmental Engineering, Pusan National University)
Byun, Im-Gyu (Department of Environmental Engineering, Pusan National University)
Park, Tae-Joo (Department of Environmental Engineering, Pusan National University)
Publication Information
Korean Journal of Chemical Engineering / v.25, no.3, 2008 , pp. 542-547 More about this Journal
Abstract
Spent sulfidic caustics (SSCs) produced from petrochemical plants contain a high concentration of hydrogen sulfide and alkalinity, and some organic matter. Most of the SSCs are incinerated with the auxiliary fuel causing secondary pollution problems. The reuse of this waste is becoming increasingly important in terms of economical and environmental viewpoints. To denitrify wastewater with a low COD/N ratio, additional carbon sources are required. Therefore, autotrophic denitrification has received increasing attention. In this research, SSCs were injected as electron donors for sulfur-based autotrophic denitrification in a modified Ludzack-Ettinger (MLE) process. According to the variations in the SSCs dosage, the efficiencies of COD, nitrification and TN removal were evaluated. Heterotrophic denitrification by organic matter and autotrophic denitrification by SSCs were also investigated. As a result, adequate injection of SSCs showed stable autotrophic denitrification. To investigate some of the harmful effects of SSCs, fluorescence in situ hybridization (FISH) for nitrifying bacteria and Thiobacillus denitrificans was performed. Ammoniaoxidizing bacteria (AOB) and Nitrospira genus showed a similar pattern. Excessive injection of SSCs made nitrifying bacteria decrease and nitrification failure occur because of the high pH caused by the SSCs. The distribution of T. denitrificans was relatively uniform as SSCs were injected. This result means that T. denitrificans are available at high pH.
Keywords
Autotrophic Denitrification; Spent Sulfidic Caustics; Fluorescence In Situ Hybridization; Thiobacilus denitrificans; Nitrifying Bacteria
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 N. Narcis, M. Rebhun and C. Scheindorf, Wat. Res., 13, 93 (1979)   DOI   ScienceOn
2 B. Batchelor and A.W. Lawrence, J. WPCF, 50, 1986 (1978)
3 T. C. Zhang and D.G. Lampe, Wat. Res., 33, 599 (1999)   DOI   ScienceOn
4 J. M. Flere and T. C. Zhang, J. Environ. Eng., 8, 721 (1999)
5 E. S. Choi and H. S. Lee, Korean J. Chem. Eng., 13, 364 (1996)   DOI   ScienceOn
6 T. Uki, Development of mRNA FISH by catalyed reporter deposition (CARD) methods targeting function gene of Aps in sulfate reducing bacteria, M.S.thesis, Department of environmental and urban engineering, Nagaoka national college of technology, Japan (2006)
7 A. Schramm, D. De Beer, M. Wagner and R. Amann, Appl. Environ. Microbiol., 64, 3480 (1998)   PUBMED
8 C. L. Laia and G.G. Jesus, J. Microbiol. Methods, 57, 69 (2004)   DOI   ScienceOn
9 S. E. Oh, Y. B. Yoo, J. C. Young and I. S. Kim, J. Biotech., 92, 1 (2001)
10 I.G. Byun, J. H. Ko, Y. R. Jung, T. H. Lee, C.W. Kim and T. J. Park, Korean J. Chem. Eng., 22, 910 (2005)   DOI   ScienceOn
11 S. H. Hur, J. J. Park, Y. J. Kim, J. C. Yu, I.G. Byun, T. H. Lee and T. J. Park, Korean J. Chem. Eng., 24, 93 (2007)   DOI   ScienceOn
12 T. C. Zhang and P. L. Bishop, Wat. Environ. Res., 68, 1107 (1996)
13 J. Surmacz-Gorska, A. Cichon and K. Miksch, Proceedings of the Env. Biotech., 1, 78 (1996)
14 G. Claus and H. J. Kutzner, Appl. Microbiol. Biotechnol., 22, 289 (1985)
15 W. Manz, M. Wagner, R. Amann and K.H. Schleifer, Wat. Res., 28, 1715 (1994)   DOI   ScienceOn
16 L. Koenig and H. Liu, Wat. Sci. Tech., 34, 496 (1996)
17 J. P. van der Hock, W. A. Hijnen, C. A. van Bennekom and B. J. Mijnarends, J. Wat. SRT-Aqua, 41, 209 (1992)
18 M. Wagner, G. Rath, H. P. Koops, J. Flood and R. Amann, Wat. Sci. Tech., 34(1/2), 237 (1996)
19 J. P. van der Hock, J.W. N. M. Kappelhof and J. C. Schippers, J. Wat. SRT-Aqua, 43, 84 (1994)
20 H. Daims, A. Brühl, R. Amann, K. H. Schleifer and M. Wagner, System Appl. Microbiol., 22, 434 (1999)   DOI   ScienceOn
21 S. Villaverde, P. A. García-Encina and F. Fdz-Polanco, Wat. Res., 31, 1180 (1997)   DOI   ScienceOn
22 H. D. Montieth, T. R. Bridle and P. M. Sutton, Evaluation of industrial waste carbon sources for biological denitrification, Environ. Canada Wastewater Tech. Centre Report, No. EPS 4-WP-79-9 (1979)
23 H. Daims, P. H. Nielsen, J. L. Nielsen, S. Juretschko and M. Wagner, Wat. Sci. Tech., 41(4/5), 85 (2000)
24 J. R. Skinde and S. K. Bhagat, J. WPCF, 54, 370 (1982)
25 T. J. Park, K. H. Lee and J. H. Lee, Korean J. Chem. Eng., 15, 9 (1998)   DOI   ScienceOn
26 B. Sharma and R. C. Albert, Wat. Res., 11, 897 (1977)   DOI   ScienceOn
27 B. K. Mobarry, M. Wagner, V. Urbain, E. Rittmann and D. A. Stahl, Appl. Environ. Microbiol., 62, 2156 (1996)   PUBMED
28 APHA, Standard methods for the examining of water and wastewater, 20th, American Public Health Association, Washington DC, USA (1998)
29 J. P. van der Hock, J.W. N. M. Kappelhof and W.A. M. Hijen, J. Chem. Tech. Biotech., 54, 197 (1992)
30 T. J. Park, K. H. Lee, D. S. Kim and C.W. Kim, Wat. Sci. Tech., 34, 9 (1996)
31 A. Jang, P. L. Bishop, S. Okabe, S.G. Lee and I. S. Kim, Wat. Sci. Tech., 47, 49 (2002)
32 S. H. Sheu and H. S. Weng, Wat. Res., 35, 2017 (2001)   DOI   ScienceOn
33 J. Sipma, A. Svitelskaya, B. van der Mark, L.W.H. Pol, G. Lettinga, C. J. N. Buisman and A. J. H. Janssen, Wat. Res., 38, 4331 (2004)   DOI   ScienceOn