Browse > Article
http://dx.doi.org/10.4491/eer.2019.090

Molecularly engineered switchable photo-responsive membrane in gas separation for environmental protection  

Rosli, Aishah (Biomass School of Chemical Engineering Campus, Universiti Sains Malaysia)
Low, Siew Chun (Biomass School of Chemical Engineering Campus, Universiti Sains Malaysia)
Publication Information
Environmental Engineering Research / v.25, no.4, 2020 , pp. 447-461 More about this Journal
Abstract
In recent years, stimuli-responsive materials have garnered interest due to their ability to change properties when exposed to external stimuli, making it useful for various applications including gas separation. Light is a very attractive trigger for responsive materials due to its speedy and non-invasive nature as well as the potential to reduce energy costs significantly. Even though light is deemed as an appealing stimulus for the development of stimuli-responsive materials, this avenue has yet to be extensively researched, as evidenced by the fewer works done on the photo-responsive membranes. Of these, there are even less research done on photo-responsive materials for the purpose of gas separation, thus, we have collected the examples that answer both these criteria in this review. This review covers the utilisation of photo-responsive materials specifically for gas separation purposes. Photo-chromic units, their integration into gas separation systems, mechanism and research that have been done on the topic so far are discussed.
Keywords
Gas separation; Membrane technology; Photo-responsive; Stimuli-responsive;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Weh K, Noack M, Hoffmann K, Schroder K-P, Caro J. Change of gas permeation by photoinduced switching of zeolite-azobenzene membranes of type MFI and FAU. Micropor. Mesopor. Mater. 2002;54:15-26.   DOI
2 Prasetya N, Ladewig BP. New Azo-DMOF-1 MOF as a photoresponsive low-energy $CO_2$ adsorbent and its exceptional $CO_2$/N2 separation performance in mixed matrix membranes. ACS Appl. Mater. Interfaces. 2018;10:34291-34301.   DOI
3 Ma S, Sun D, Wang X-S, Zhou H-C. A mesh-adjustable molecular sieve for general use in gas separation. Angew. Chem. Int. Ed. 2007;46:2458-2462.   DOI
4 Ma S, Sun D, Yuan D, Wang X-S, Zhou H-C. Preparation and gas adsorption studies of three mesh-adjustable molecular sieves with a common structure. J. Am. Chem. Soc. 2009;131:6445-6451.   DOI
5 Wriedt M, Sculley JP, Yakovenko AA, et al. Low-energy selective capture of carbon dioxide by a pre-designed elastic single-molecule trap. Angew. Chem. Int. Ed. 2012;51:9804-9808.   DOI
6 Yang CT, Kshirsagar AR, Eddin AC, Lin LC, Poloni R. Tuning gas adsorption by metal node blocking in photoresponsive metal-Organic frameworks. Chem. Eur. J. 2018;24:15167-15172.   DOI
7 Gong LL, Feng XF, Luo F. Novel azo-metal-organic framework showing a 10-connected bct Net, breathing behavior, and unique photoswitching behavior toward $CO_2$. Inorg. Chem. 2015;54:11587-11589.   DOI
8 Kanj AB, Muller K, Heinke L. Stimuli-responsive metal-organic frameworks with photoswitchable azobenzene side groups. Macromol Rapid Commun. 2018;39:1700239.   DOI
9 Kausar A. Research progress in frontiers of poly (ionic liquid)s:A review. Polym. Plast. Technol. Eng. 2017;56:1823-1838.   DOI
10 He D, Susanto H, Ulbricht M. Photo-irradiation for preparation, modification and stimulation of polymeric membranes. Prog. Polym. Sci. 2009;34:62-98.   DOI
11 Fan CB, Le Gong L, Huang L, et al. Significant enhancement of $C_2H_/C_2H_4$ separation by a photochromic diarylethene unit:A temperature and light responsive separation switch. Angew. Chem. Int. Ed. 2017;56:7900-7906.   DOI
12 Becker D, Konnertz N, Bohning M, Schmidt J, Thomas A. Light-switchable polymers of intrinsic microporosity. Chem. Mater. 2016;28:8523-8529.   DOI
13 Schneemann A, Bon V, Schwedler I, et al. Flexible metal-organic frameworks. Chem. Soc. Rev. 2014;43:6062-6096.   DOI
14 Ng QH, Lim JK, Ahmad AL, Ooi BS, Low SC. Efficacy evaluation of the antifouling magnetite-PES composite membrane through QCM-D and magnetophoretic filtration performances. Sep. Purif. Technol. 2014;132:138-148.   DOI
15 Huang R, Hill MR, Babarao R, Medhekar NV. $CO_2$ Adsorption in azobenzene functionalized stimuli responsive metal-organic frameworks. J. Phys. Chem. C. 2016;120:16658-16667.   DOI
16 Ng QH, Lim JK, Ahmad AL, Ooi BS, Low SC. Magnetic nanoparticles augmented composite membranes in removal of organic foulant through magnetic actuation. J. Membr. Sci. 2015;493:134-146.   DOI
17 Chu L, Xie R, Ju X. Stimuli-responsive membranes: Smart tools for controllable mass-transfer and separation processes. Chin. J. Chem. Eng. 2011;19:891-903.   DOI
18 Ueki T. Stimuli-responsive polymers in ionic liquids. Polym. J. 2014;46:646-655.   DOI
19 Lyndon R, Konstas K, Ladewig BP, et al. Dynamic photo-switching in metal-Organic frameworks as a route to low-energy carbon dioxide capture and release. Angew. Chem. 2013;125:3783-3786.   DOI
20 An W, Aulakh D, Zhang X, et al. Switching of adsorption properties in a zwitterionic metal-Organic framework triggered by photogenerated radical triplets. Chem. Mater. 2016;28:7825-7832.   DOI
21 Bassanetti I, Bracco S, Comotti A, et al. Flexible porous molecular materials responsive to $CO_2$, $CH_4$ and Xe stimuli. J. Mater. Chem. A. 2018;6:14231-14239.   DOI
22 Gao Q, Xu J, Cao D, Chang Z, Bu X-H. A rigid nested metal-Organic framework featuring a thermoresponsive gating effect dominated by counterions. Angew. Chem. Int. Ed. 2016;55:15027-15030.   DOI
23 Zhang Q, Zhang J, Wan S, Wang W, Fu L. Stimuli-responsive 2D materials beyond graphene. Adv. Funct. Mater. 2018;28:1802500.   DOI
24 Yanai N, Uemura T, Inoue M, et al. Guest-to-host transmission of structural changes for stimuli-responsive adsorption property. J. Am. Chem. Soc. 2012;134:4501-4504.   DOI
25 Ng QH, Lim JK, Ahmad AL, Low SC. Stability and fouling mechanism of magnetophoretic-actuated PES composite membrane in pH-dependent aqueous medium. J. Membr. Sci. 2016;508:40-50.   DOI
26 Nagarkar SS, Desai AV, Ghosh SK. Stimulus-responsive metal-Organic frameworks. Chem. Asian J. 2014;9:2358-2376.   DOI
27 Knebel A, Sundermann L, Mohmeyer A, et al. Azobenzene guest molecules as light-switchable $CO_2$ valves in an ultrathin UiO-67 membrane. Chem. Mat. 2017;29:3111-3117.   DOI
28 Tian H, Yang S. Recent progresses on diarylethene based photochromic switches. Chem. Soc. Rev. 2004;33:85-97.   DOI
29 Ding X, Han B-H. Metallophthalocyanine-based conjugated microporous polymers as highly efficient photosensitizers for singlet oxygen generation. Angew. Chem. 2015;127:6636-6639.   DOI
30 Castellanos S, Goulet-Hanssens A, Zhao F, et al. Structural effects in visible-light-responsive metal-organic frameworks incorporating ortho-fluoroazobenzenes. Chem. Eur. J. 2016;22:746-752.   DOI
31 Weh K, Noack M, Ruhmann R, et al. Modification of the transport properties of a polymethacrylate-azobenzene membrane by photochemical switching. Chem. Eng. Technol. 1998;21:408-412.   DOI
32 Fan CB, Liu ZQ, Gong LL, et al. Photoswitching adsorption selectivity in a diarylethene-azobenzene MOF. Chem. Commun. 2017;53:763-766.   DOI
33 Kameda M, Sumaru K, Kanamori T, Shinbo T. Photoresponse gas permeability of azobenzene-functionalized glassy polymer films. J. Appl. Polym. Sci. 2003;88:2068-2072.   DOI
34 Li X, Li B, He M, et al. Convenient and robust route to photoswitchable hierarchical liquid crystal polymer stripes via flow-enabled self-assembly. ACS Appl. Mater. Interf. 2018;10:4961-4970.   DOI
35 Zhu Y, Zhang W. Reversible tuning of pore size and $CO_2$ adsorption in azobenzene functionalized porous organic polymers. Chem. Sci. 2014;5:4957-4961.   DOI
36 Nicoletta FP, Cupelli D, Formoso P, et al. Light responsive polymer membranes: A review. Membranes 2012;2:134-197.   DOI
37 Shim J-G, Lee DW, Lee JH, Kwak N-S. Experimental study on capture of carbon dioxide and production of sodium bicarbonate from sodium hydroxide. Environ. Eng. Res. 2016;21:297-303.   DOI
38 Klajn R. Immobilized azobenzenes for the construction of photoresponsive materials. Pure Appl. Chem. 2010;82:2247-2279.   DOI
39 Park J, Yuan D, Pham KT, et al. Reversible alteration of $CO_2$ adsorption upon photochemical or thermal treatment in a metal-Organic framework. J. Am. Chem. Soc. 2012;134:99-102.   DOI
40 Dalane K, Dai Z, Mogseth G, Hillestad M, Deng L. Potential applications of membrane separation for subsea natural gas processing: A review. J. Nat. Gas Sci. Eng. 2017;39:101-117.   DOI
41 Patkool C, Chawakitchareon P, Anuwattana R. Enhancement of efficiency of activated carbon impregnated chitosan for carbon dioxide adsorption. Environ. Eng. Res. 2014;19:289-292.   DOI
42 Rosli A, Ahmad AL, Lim JK, Low SC. Advances in liquid absorbents for $CO_2$ capture: A Review. J. Phys. Sci. 2017;28:121.   DOI
43 Ahmad AL, Rosli A, Low SC, Lim JK. Effects of Silica loading on the absorption of carbon dioxide by mixed matrix membranes. J. Phys. Sci. 2018;29:91-97.   DOI
44 Guo Z, Zhang XM, Zhang CL, Luan JY. Research development of membrane materials for separation of $CO_2$ from flue gas. Xian Dai Hua Gong. 2016;36:42-45&47.
45 Hamid MRA, Jeong HK. Recent advances on mixed-matrix membranes for gas separation: Opportunities and engineering challenges. Korean J. Chem. Eng. 2018;35:1577-1600.   DOI
46 Irie M. Diarylethenes for memories and switches. Chem. Rev. 2000;100:1685-1716.   DOI
47 Gui B, Meng Y, Xie Y, et al. Immobilizing organic-based molecular switches into metal-organic frameworks: A promising strategy for switching in solid state. Macromol. Rapid Commun. 2018;39:1700388.   DOI
48 Sasikumar B, Arthanareeswaran G, Ismail AF. Recent progress in ionic liquid membranes for gas separation. J. Mol. Liq. 2018;266:330-341.   DOI
49 Modrow A, Zargarani D, Herges R, Stock N. Introducing a photo-switchable azo-functionality inside Cr-MIL-101-NH 2 by covalent post-synthetic modification. Dalton Trans. 2012;41:8690-8696.   DOI
50 Luo F, Fan CB, Luo MB, et al. Photoswitching $CO_2$ capture and release in a photochromic diarylethene metal-organic framework. Angew. Chem. Int. Ed. 2014;53:9298-9301.   DOI
51 Healey K, Liang W, Southon PD, Church TL, D'Alessandro DM. Photoresponsive spiropyran-functionalised MOF-808: Postsynthetic incorporation and light dependent gas adsorption properties. J. Mater. Chem. A. 2016;4:10816-10819.   DOI
52 Minkin VI. Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds. Chem. Rev. 2004;104:2751-2776.   DOI
53 Berkovic G, Krongauz V, Weiss V. Spiropyrans and spirooxazines for memories and switches. Chem. Rev. 2000;100:1741-1754.   DOI
54 Dang L-L, Zhang X-J, Zhang L, et al. Photo-responsive azo MOF exhibiting high selectivity for $CO_2$ and xylene isomers. J. Coord. Chem. 2016;69:1179-1187.   DOI
55 Huang N, Ding X, Kim J, Ihee H, Jiang D. A photoresponsive smart covalent organic framework. Angew. Chem. Int. Ed. 2015;54:8704-8707.   DOI
56 Li H, Sadiq MM, Suzuki K, et al. MaLISA - A cooperative method to release adsorbed gases from metal-organic frameworks. J. Mater. Chem. A. 2016;4:18757-18762.   DOI
57 Coudert Fo-X. Responsive metal-Organic frameworks and framework materials: Under pressure, taking the heat, in the spotlight, with friends. Chem. Mater. 2015;27:1905-1916.   DOI
58 Hermann D, Emerich H, Lepski R, Schaniel D, Ruschewitz U. Metal-organic frameworks as hosts for photochromic guest molecules. Inorg. Chem. 2013;52:2744-2749.   DOI
59 Rosli A, Shoparwe NF, Ahmad AL, Low SC, Lim JK. Dynamic modelling and experimental validation of $CO_2$ removal using hydrophobic membrane contactor with different types of absorbent. Sep. Purif. Technol. 2019;219:230-240.   DOI
60 Tan PC, Ooi BS, Ahmad AL, Low SC. Monomer atomic configuration as key feature in governing the gas transport behaviors of polyimide membrane. J. Appl. Polym. Sci. 2018;135:46073.   DOI
61 Rosli A, Ahmad AL, Low SC. Anti-wetting polyvinylidene fluoride membrane incorporated with hydrophobic polyethylene-functionalized-silica to improve $CO_2$ removal in membrane gas absorption. Sep. Purif. Technol. 2019;221:275-285.   DOI
62 Xiao Y, Low BT, Hosseini SS, Chung TS, Paul DR. The strategies of molecular architecture and modification of polyimide-based membranes for $CO_2$ removal from natural gas - A review. Prog. Polym. Sci. 2009;34:561-580.   DOI
63 Brunetti A, Macedonio F, Barbieri G, Drioli E. Membrane engineering for environmental protection and sustainable industrial growth: Options for water and gas treatment. Environ. Eng. Res. 2015;20:307-328.   DOI
64 Li H, Chen V, Hou J, Dong G. Evaluation of $CO_2$ capture with high performance hollow fibre membranes from flue gas: Final report. ANLEC report. Canberra: Cooperative research centre for greenhouse gas technologie; 2015.
65 Scholes CA, Tao WX, Stevens GW, Kentish SE. Sorption of methane, nitrogen, carbon dioxide, and water in Matrimid 5218. J. Appl. Polym. Sci. 2010;117:2284-2289.   DOI
66 Wandera D, Wickramasinghe SR, Husson SM. Stimuli-responsive membranes. J. Membr. Sci. 2010;357:6-35.   DOI
67 Ohya H, Kudryavtsev VV, Semenova SI. Polyimide membranes:Applications, fabrications, and properties. Tokyo: Kodansha Ltd; 1996.
68 Tang H, Lu D, Wu C. Intramolecular hydrogen bonds enhance disparity in reactivity between isomers of photoswitchable sorbents and $CO_2$: A computational study. Chem. Phys. Chem. 2015;16:1926-1932.   DOI
69 Li H, Martinez MR, Perry Z, et al. A robust metal-Organic framework for dynamic light-induced swing adsorption of carbon dioxide. Chem. Eur. J. 2016;22:11176-11179.   DOI
70 Zhang J, Wang L, Li N, et al. A novel azobenzene covalent organic framework. Cryst. Eng. Commun. 2014;16:6547-6551.   DOI
71 Duan K, Wang J, Zhang Y, Liu J. Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective $CO_2/N_2$ separation. J. Membr. Sci. 2019;572:588-595.   DOI
72 Ulbricht M. Advanced functional polymer membranes. Polymer 2006;47:2217-2262.   DOI
73 Wang Z, Knebel A, Grosjean S, et al. Tunable molecular separation by nanoporous membranes. Nat. Commun. 2016;7:13872.   DOI
74 Fan H, Mundstock A, Feldhoff A, et al. Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation. J. Am. Chem. Soc. 2018;140:10094-10098.   DOI
75 Shan M, Seoane B, Andres-Garcia E, Kapteijn F, Gascon J. Mixed-matrix membranes containing an azine-linked covalent organic framework: Influence of the polymeric matrix on post-combustion $CO_2$-capture. J. Membr. Sci. 2018;549:377-384.   DOI
76 Muller K, Knebel A, Zhao F, et al. Switching thin films of azobenzene-containing metal-organic frameworks with visible light. Chem. Eur. J. 2017;23:5434-5438.   DOI
77 Prasetya N, Teck AA, Ladewig BP. Matrimid-JUC-62 and Matrimid-PCN-250 mixed matrix membranes displaying light-responsive gas separation and beneficial ageing characteristics for $CO_2/N_2$ separation. Sci. Rep. 2018;8:2944.   DOI