Browse > Article
http://dx.doi.org/10.4491/eer.2017.220

Valuable bioproducts obtained from microalgal biomass and their commercial applications: A review  

Bhalamurugan, Gatamaneni Loganathan (Department of Bioresource Engineering, McGill University, MacDonald Campus)
Valerie, Orsat (Department of Bioresource Engineering, McGill University, MacDonald Campus)
Mark, Lefsrud (Department of Bioresource Engineering, McGill University, MacDonald Campus)
Publication Information
Environmental Engineering Research / v.23, no.3, 2018 , pp. 229-241 More about this Journal
Abstract
Microalgae are likely to become a part of our everyday diet in the near future as they are considered to be rich in proteins, carbohydrates, and high density lipoproteins. They will play a pivotal role in the food cycle of many people around the globe. Use of microalgae in treating wastewater is also one of the disciplines which are luring researchers as this contributes to a sustainable way of exploiting resources while keeping the environment safe. In addition, microalgal biomass also has the potential to be used as a feedstock for producing biofuel, bio fertilizers, pharmaceuticals, nutraceuticals and other bio-based products. This review presents the different value-added products obtained from microalgal biomass and the applicability of these products commercially.
Keywords
Biomass; Microalgae; Sustainable; Wastewater;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Amaro HM, Esquível MG, Pinto TS, Malcata FX. Hydrogen production by microalgae. In: Reza Razeghifard, ed. Natural and artificial photosynthesis: Solar power as an energy source. 1st ed. John Wiley and Sons, Inc.; 2013. p. 231-241.
2 Chader S, Mahmah B, Chetehouna K, Amrouche F, Abdeladim K. Biohydrogen production using green microalgae as an approach to operate a small proton exchange membrane fuel cell. Int. J. Hydrogen Energ. 2011;36:4089-4093.
3 Ali I, Rakshit SK, Kanhayuwa L. Biohydrogen production from microalgae of Chlorella sp. In: The International Conference on Sustainable Community Development; 27-29 January 2011; p.74-77.
4 Herrero M, Castro-Puyana M, Mendiola JA, Ibanez E. Compressed fluids for the extraction of bioactive compounds. Trends Anal. Chem. 2013;43:67-83.   DOI
5 Yan N, Fan C, Chen Y, Hu Z. The potential for microalgae as bioreactors to produce pharmaceuticals. Int. J. Mol. Sci. 2016;17:1-24.
6 Scaife MA, Nguyen J, Rico D, Lambert K, Helliwell E, Smith AG. Establishing Chlamydomonas reinhardtii as an industrial biotechnology host. Plant J. 2015;82:532-546.   DOI
7 Skjanes K, Rebours C, Lindblad P. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit. Rev. Biotechnol. 2013;33:172-215.   DOI
8 Renuka N, Prasanna R, Sood A, et al. Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. Environ. Sci. Pollut. Res. 2016;23:6608-6620.   DOI
9 Dineshkumar R, Subramanian J, Gopalsamy J, et al. The impact of using microalgae as biofertilizer in maize (Zea mays L.). Waste Biomass Valori. 2017:1-10.
10 Bhattacharjee M. Pharmaceutically valuable bioactive compounds of algae. Asian J. Pharm. Clin. Res. 2016;9:43-47.   DOI
11 Saifuddin N, Priatharsini P. Developments in bio-hydrogen production from algae: A review. Res. J. Appl. Sci. Eng. Technol. 2016;12:968-982.
12 Santhosh S, Dhandapani R, Hemalatha N. Bioactive compounds from microalgae and its different applications - A review. Adv. Appl. Sci. Res. 2016;7:153-158.
13 García JL, Vicente M, Galan B. Microalgae, old sustainable food and fashion nutraceuticals. Microb. Biotechnol. 2017;10:1017-1024.   DOI
14 Jensen GS, Ginsberg DI, Drapeau C. Blue-green algae as an immuno-enhancer and biomodulator. J. Nutraceu. Nutri. 2001;3:24-30.
15 Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006;10:87-96.
16 Algae market, by application, by cultivation technology, and geography - Global industry analysis, size, share, growth, trends, and forecast - 2016-2024 [Internet]. Anonymous: 2016 [Cited 17 December 2017]. Available from: https://www.prnewswire.com/news-releases/global-algae-market-is-projected-to-be-worth-us11-bn-by-2024-at-a-cagr-of-739-global-industry-analysis-size-share-growth-trends-andforecast-2016---2024-tmr-594253011.html.
17 Borowitzka MA. Algae as food. In: Wood BJB, ed. Microbiology of fermented foods. 2nd ed. Boston, MA: Thomson Science Boston, MA: Springer; 1997. p. 585-602.
18 Brown MR, Jeffrey SW, Volkman JK and Dunstan GA. Nutritional properties of microalgae for mariculture. Aquaculture 1997;151:315-331.   DOI
19 Dore JE, Cysewski GR. Haematococcus algae meal as a source of natural astaxanthin for aquaculture feeds. Cyanotech. Corpor. 2003;1-5.
20 Market opportunities for microalgae-based biorefineries [Internet]. Jesse: c2016 [cited 01 Feb 2018]. Available from: https://insightrefinery.wordpress.com/2016/02/08/market-opportunities-for-microalgae-based-biorefineries/.
21 Winwood RJ. Recent developments in the commercial production of DHA and EPA rich oils from micro-algae. OCL 2013;20:1-5.   DOI
22 Patil V, Reitan KI, Knutsen G, et al. Microalgae as source of polyunsaturated fatty acids for aquaculture. Plant Biol. 2005;6:57-65.
23 Patil V, Kallqvist T, Olsen E, Vogt E, Gislerod HR. Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquacult. Int. 2007;15:1-9.   DOI
24 Matos J, Cardoso C, Bandarra N. M, Afonso C. Microalgae as healthy ingredients for functional food: A review. Food Funct. 2017;8:2672-2685.   DOI
25 Agarwal S, Rao AV. Tomato lycopene and its role in human health and chronic diseases. Can. Med. Assoc. J. 2000;163:739-744.
26 Mourelle ML, Gomez CP, Legido JL. The potential use of marine microalgae and cyanobacteria in cosmetics and thalassotherapy. Cosmetics 2017;4:1-14.   DOI
27 Giovannucci E. Tomatoes, tomato-based products, lycopene, and cancer: Review of the epidemiologic literature. J. Nat. Can. Inst. 1999;91:317-331.   DOI
28 Schweiggert RM, Carle R. Carotenoid production by bacteria, microalgae, and fungi. In: Kaczor A, Baranska M, eds. Carotenoids: Nutrition, analysis and technology. John Wiley & Sons, Ltd.; 2016. p. 217-240.
29 Yaakob Z, Ali E, Zainal A, Mohamad M, Takriff MS. An overview: Biomolecules from microalgae for animal feed and aquaculture. J. Biol. Res. (Thessalon.) 2014;21:1-10.   DOI
30 Lum KK, Kim J, Lei XG. Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. J. Animal Sci. Biotechnol. 2013;4:1-7.   DOI
31 Toyomizu M, Sato K, Taroda H, Kato T, Akiba Y. Effects of dietary Spirulina on meat colour in muscle of broiler chickens. Brit. Poult. Sci. 2001;42:197-202.   DOI
32 Chiaramonti D. Bioethanol: Role and production technologies. In: Ranalli P, ed. Improvement of crop plants for industrial end uses. 1st ed. Netherlands: Dordrecht: Springer; 2007. p. 209-251.
33 Guillerme JB, Couteau C, Coiffard L. Applications for marine resources in cosmetics. Cosmetics 2017:4:1-15.   DOI
34 Renju G, Kurup GM, Kumari CS. Effect of lycopene from Chlorella marina on high cholesterol-induced oxidative damage and inflammation in rats. Inflammopharmacology 2014;22:45-54.   DOI
35 Gonzalez-Delgado AD, Kafarov V. Microalgae based biorefinery: Issues to consider. C.T.F Cienc. Tecnol. Futuro 2011;4:5-22.
36 Guan Y, Deng M, Yu X, Zhang W. Two-stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis. Biochem. Eng. J. 2004;19:69-73.   DOI
37 Kumari S, Nasr M, Kumar S. Technological advances in biohydrogen production from microalgae. In: Gupta SK, Malik A, Bux F, eds. Algal biofuels: Recent advances and future prospects. Durban: Springer International Publishing; 2017. p. 347-360.
38 Harun R, Danquah MK, Forde GM. Microalgal biomass as a fermentation feedstock for bioethanol production. J. Chem. Technol. Biotechnol. 2010;85:199-203.
39 Hirano A, Ueda R, Hirayama S, Ogushi Y. $CO_2$ fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 1997;22:137-142.   DOI
40 Nigam PS, Singh A. Production of liquid biofuels from renewable resources. Prog. Energ. Combust. Sci. 2011;37:52-68.   DOI
41 Ueno Y, Kurano N, Miyachi S. Ethanol production by dark fermentation in the marine green alga, Chlorococcum littorale. J. Ferment. Bioeng. 1998;86:38-43.   DOI
42 Hirayama S, Ueda R, Ogushi Y, et al. Ethanol production from carbon dioxide by fermentative microalgae. Stud. Surf. Sci. Catal. 1998;114:657-660.
43 Ho SH, Li PJ, Liu CC, Chang JS. Bioprocess development on microalgae-based $CO_2$ fixation and bioethanol production using Scenedesmus obliquus CNW-N. Bioresour. Technol. 2013;145:142-149.   DOI
44 Mondal M, Goswami S, Ghosh A, et al. Production of biodiesel from microalgae through biological carbon capture: A review. 3 Biotech 2017;7:1-21.
45 Gouveia L. Microalgae as a feedstock for biofuels. 1st ed. Springer; 2011. p. 1-69.
46 Wen Z, Johnson MB. Microalgae as a feedstock for biofuel production. Virginia Cooperative Extension publ. 442-880. Virginia, PA: Virginia Polytechnic Institute and State University; 2009.
47 Wang B, Li Y,Wu N, Lan CQ. $CO_2$ bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 2008;79:707-718.   DOI
48 Chader S, Mahmah B, Chetehouna K, Mignolet E. Biodiesel production using Chlorella sorokiniana a green microalga. Revue Energ. Renouv. 2011;14:21-26.
49 Odjadjare EC, Mutanda T, Olaniran O. Potential biotechnological application of microalgae: A critical review. Crit. Rev. Biotechnol. 2017;37:37-52.   DOI
50 Sekar S, Chandramohan M. Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J. Appl. Phycol. 2008;20:113-136.   DOI
51 De Jesus Raposo MF, de Morais RMSC, de Morais AMMB. Health applications of bioactive compounds from marine microalgae. Life Sci. 2013;93:479-486.   DOI
52 Carotenoids - Global Market Outlook [Internet] Anonymous: 2017 [cited 17 December 2017]. Available from: https://www.reportlinker.com/p04670904/Carotenoids-Global-Market-Outlook.html.
53 Soletto D, Binaghi L, Lodi A, Carvalho JCM, Converti A. Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. Aquaculture 2005;243:217-224.   DOI
54 Varfolomeev SD, Wasserman LA. Microalgae as source of biofuel, food, fodder, and medicines. Appl. Biochem. Microbiol. 2011;47:789-807.   DOI
55 Shah GC, Yadav M, Tiwari A. Assessment for the higher production of biodiesel from Scenedesmus dimorphus algal species using different methods. J. Biofuels 2011;2:91-97.   DOI
56 Kim GV, Choi W, Kang D, Lee S, Lee H. Enhancement of biodiesel production from marine alga, Scenedesmus sp. through in situ transesterification process associated with acidic catalyst. BioMed Res. Int. 2014;2014:391542.
57 Mata M, Melo A, Meireles S, Mendes A, Martins A, Caetano N. Potential of microalgae Scenedesmus obliquus grown in brewery wastewater for biodiesel production. Chem. Eng. Trans. 2013;32:901-906.
58 Moser BR. Biodiesel production, properties, and feedstocks. In Vitro Cell. Dev. Biol. Plant 2009;45:229-266.   DOI
59 Shin DY, Cho HU, Utomo JC, Choi YN, Xu X, Park JM. Biodiesel production from Scenedesmus bijuga grown in anaerobically digested food wastewater effluent. Bioresour. Technol. 2015;184:215-221.   DOI
60 Jena J, Nayak M, Panda HS, et al. Microalgae of Odisha coast as a potential source for biodiesel production. World Environ. 2012;2:11-16.   DOI
61 Sumi Y. Microalgae pioneering the future-application and utilization. Sci. Technol. Trend. 2009;34:9-21.
62 Amotz B. Industrial production of microalagal cell-mass and secondary products - Major industrial species Dunaliella. Handbook of microalgal culture biotechnology and applied phycology. BlackWell Publishing Limited, UK; 2004. p. 273-280.
63 Bruneel C, Lemahieu C, Fraeye I, et al. Impact of microalgal feed supplementation on omega-3 fatty acid enrichment of hen eggs. J. Funct. Foods 2013;5:897-904.   DOI
64 Evans A, Smith D, Moritz J. Effects of algae incorporation into broiler starter diet formulations on nutrient digestibility and 3 to 21 d bird performance. J. Appl. Poult. Res. 2015;24:206-214.   DOI
65 Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: A review. Renew. Sust. Energ. Rev. 2010;14:217-232.   DOI
66 Talero Barrientos EM, Garcia-Maurino S, Roman A, et al. Bioactive compounds isolated from microalgae in chronic inflammation and cancer. Mar. Drugs 2015;13:6152-6209.   DOI
67 Liu Y, Xu L, Cheng N, Lin L, Zhang C. Inhibitory effect of phycocyanin from Spirulina platensis on the growth of human leukemia K562 cells. J. Appl. Phycol. 2000;12:125-130.   DOI
68 Liang S, Liu X, Chen F, Chen Z. Current microalgal health food R & D activities in China. Hydrobiologia 2004;512:45-48   DOI
69 Markou G, Nerantzis E. Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnol. Adv. 2013;31:1532-1542.   DOI
70 Priyadarshani I, Rath B. Commercial and industrial applications of micro algae - A review. J. Algal Biomass Utln. 2012;3:89-100.
71 Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S. Biofuels from algae: Challenges and potential. Biofuels 2010;1:763-784.   DOI
72 Ercin AE, Aldaya MM, Hoekstra AY. The water footprint of soy milk and soy burger and equivalent animal products. Ecol. Indic. 2012;18:392-402.   DOI
73 Rashida N, Rehmanb MSU, Sadiqd M, Mahmoode T, Han JI. Current status, issues and developments in microalgae derived biodiesel production. Renew. Sust. Energ. Rev. 2014;40:760-778.   DOI
74 Schenk P M, Thomas-Hall SR, Stephens E, et al. Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenergy Res. 2008;1:20-43.   DOI
75 John RP, Anisha GS, Nampoothiri KM, Pandey A. Micro and macroalgal biomass: A renewable source for bioethanol. Bioresour. Technol. 2011;102:186-193.   DOI
76 Harun R, Danquah MK. Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochem. 2011;46:304-309.   DOI
77 Markou G, Angelidaki I, Nerantzis E, Georgakakis D. Bioethanol production by carbohydrate-enriched biomass of Arthrospira (Spirulina) platensis. Energies 2013;6:3937-3950.   DOI
78 Mokady S, Abramovici A, Cogan U. The safety evaluation of Dunaliella bardawil as a potential food supplement. Food Chem. Toxicol. 2014;27:221-226.
79 Gross U, Gross R. Acceptance and product selection of food fortified with the microalga Scenedesmus. In: Carl JS, Binsack R, eds. Microalgae for food and feed. Stuttgart: Archiv fur Hydrobiologie Beihefte Ergebnisse der Limnologie;1978. p. 174-183.
80 Ishaq AG, Matias-Peralta HM, Basri H. Bioactive compounds from green microalga-scenedesmus and its potential applications: A brief review. Pert. J. Trop. Agr. Sci. 2016;39:1-16.
81 Anand P, Tiwari A, Mishra RM, Awasthi S. Production of algae biofertilizers for rice crop (Oryza sativa) to safe human health & environment as a supplement to the chemical fertilizers. J. Sci. 2015;5:13-15.
82 Abdel-Raouf N, Al-Homaidan A, Ibraheem I. Agricultural importance of algae. Afr. J. Biotechnol. 2012;11:11648-11658.
83 Song T, Mårtensson L, Eriksson T, Zheng W, Rasmussen U. Biodiversity and seasonal variation of the cyanobacterial assemblage in a rice paddy field in Fujian, China. FEMS Microbiol. Ecol. 2005;54:131-140.   DOI
84 Garcia-Gonzalez J, Sommerfeld M. Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. J. Appl. Phycol. 2016;28:1051-1061.   DOI
85 Faheed FA, Fattah ZA. Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of lettuce plant. J. Agr. Soc. Sci. (Pak.). 2008;4:165-169.
86 Shenbaga Devi A, Santhanam P, Rekha V, et al. Culture and biofuel producing efficacy of marine microalgae Dunaliella salina and Nannochloropsis sp. J. Algal Biomass Utln. 2012;3:38-44.
87 Eman MF, El DM. Fatty acids composition and biodiesel characterization of Dunaliella salina. J. Water Resour. Prot. 2013;5:894-899.   DOI
88 Zahroojian N, Moravej H, Shivazad M. Effects of dietary marine algae (Spirulina platensis) on egg quality and production performance of laying hens. J. Agr. Sci. Technol. 2013;15:1353-1360.
89 Unpaprom Y, Tipnee S, Ramaraj R. Biodiesel from green alga Scenedesmus acuminatus. Int. J. Sust. Green Energ. 2015;4:1-6.
90 Shanmugapriya B, Babu SS, Hariharan T, Sivaneswaran S, Anusha M. Dietary administration of Spirulina platensis as probiotics on growth performance and histopathology in broiler chicks. Int. J. Rec. Sci. Res. 2015;6:2650-2653.
91 Harel M, Clayton D, Bullis R. Feed formulation for terrestrial and aquatic animals. Patent Pub. No. US 2007/0082008 A1. 2004.
92 Bishop MA, West, Zubeck M. Evaluation of microalgae for use as nutraceuticals and nutritional supplements. Nutr. Food Sci. 2012;2:1-6.
93 Kang H, Salim H, Akter N, et al. Effect of various forms of dietary Chlorella supplementation on growth performance, immune characteristics, and intestinal microflora population of broiler chickens. J. Appl. Poult. Res. 2013;22:100-108.   DOI
94 Zheng L, Oh ST, Jeon JY, et al. The dietary effects of fermented Chlorella vulgaris (CBT$^{(R)}$) on production performance, liver lipids and intestinal microflora in laying hens. Asian-Australas J. Anim. Sci. 2012;25:261-266.
95 Kotrbacek V, Skrivan M, Kopecky J, et al. Retention of carotenoids in egg yolks of laying hens supplemented with heterotrophic Chlorella. Czech J. Anim. Sci. 2013;58:193-200.   DOI
96 Lemahieu C, Bruneel C, Termote-Verhalle R, Muylaert K, Buyse J, Foubert I. Impact of feed supplementation with different omega-3 rich microalgae species on enrichment of eggs of laying hens. Food Chem. 2013;141:4051-4059.   DOI
97 Arora N, Agarwal S, Murthy R. Latest technology advances in cosmaceuticals. Int. J. Pharm. Sci. Drug Res. 2012;4:168-182.
98 Wang HMD, Chen CC, Huynh P, Chang JS. Exploring the potential of using algae in cosmetics. Bioresour. Technol. 2015;184:355-362.   DOI
99 Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 2004;65:635-648.   DOI
100 Rajesh G, Roshan M, Krishnamurthy V, Bhattacharjee S. Production of lipids in photobioreactors using microalgae. Int. J. Sci. Eng. Res. 2014;5:1223-1238.
101 The next big superfood could be green and slimy [Internet]. Baehr: c2011 [cited 07 August 2017]. Available from: http://www.businessinsider.com/algae-is-the-superfood-of-the-future-2014-6.
102 Shivhare S, Mishra AK, Sethi VK, Bhadoria AKS. Growth rate, biochemical and biomass analysis of scenedesmus obliquus algae in Shahpura Lake Bhopal (MP). Int. J. Pharm. Chem. Sci. 2014;3:477-482.
103 Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F. Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour. Technol. 2011;102:57-70.   DOI
104 Minhas AK, Hodgson P, Barrow CJ, Adholeya A. A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front Microbiol. 2016;7:1-19.
105 Misra R, Guldhe A, Singh P, Rawat I, Bux F. Electrochemical harvesting process for microalgae by using nonsacrificial carbon electrode: A sustainable approach for biodiesel production. Chem. Eng. J. 2014;255:327-333.   DOI
106 Borowitzka MA. High-value products from microalgae - Their development and commercialisation. J. Appl. Phycol. 2013;25:743-756.   DOI
107 Mozaffarieh M, Sacu S, Wedrich A. The role of the carotenoids, lutein and zeaxanthin, in protecting against age-related macular degeneration: A review based on controversial evidence. Nutr. J. 2003;2:1-8.   DOI
108 Fernandez-Sevilla JM, Fernandez FA, Grima EM. Biotechnological production of lutein and its applications. Appl. Microbiol. Biotechnol. 2010;86:27-40.   DOI
109 Srinivasakumar K. Biodiesel fuel production from marine microalgae Isochrysis galbana, Pavlova lutheri, Dunaliella salina and measurement of its viscosity and density. Int. J. Mar. Sci. 2013;3:33-35.
110 Abd El Baky HH, El-Baroty GS, Bouaid A. Lipid induction in Dunaliella salina culture aerated with various levels $CO_2$ and its biodiesel production. J. Aquacult. Res. Dev. 2014;5:1-6.
111 Weldy CS, Huesemann M. Lipid production by Dunaliella salina in batch culture: Effects of nitrogen limitation and light intensity. J. Undergraduate Res. 2007;7:115-122.
112 Ma Y, Wang Z, Yu C, Yin Y, Zhou G. Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production. Bioresour. Technol. 2014;167:503-509.   DOI
113 Sohi SMH, Eghdami A. Biodiesel production using marine microalgae Dunaliella salina. J. Biodivers. Environ. Sci. 2014;4:177-182.
114 Chisti Y. Biodiesel from microalgae. Biotechnol. Adv. 2007;25:294-306.   DOI
115 Hariskos I, Posten C. Biorefinery of microalgae - Opportunities and constraints for different production scenarios. Biotechnol. J. 2014;9:739-752.   DOI
116 Chew KW, Yap JY, Show PL, et al. Microalgae biorefinery: High value products perspectives. Bioresour. Technol. 2017;229:53-62.   DOI
117 Nagarajan D, Lee DJ, Kondo A, Chang AS. Recent insights into biohydrogen production by microalgae - From biophotolysis to dark fermentation. Bioresour. Technol. 2017;227:373-387.   DOI
118 Fabrowska J, Leska B, Schroeder G, Messyasz B, Pikosz M. Biomass and extracts of algae as material for cosmetics. In: Kim SK, Chojnacka K, eds. Marine algae extracts. 1st ed. Wiley-VCH Verlag GmbH & Co. KGaA; 2015. p. 681-706.
119 Benemann JR. Hydrogen production by microalgae. J. Appl. Phycol. 2000;12:291-300.   DOI
120 Shaishav S, Singh R, Satyendra T. Biohydrogen from algae: Fuel of the future. Int. Res. J. Environ. Sci. 2013;2:44-47.
121 Azmir J, Zaidul ISM, Rahman MM, Sharif KM, et al. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013;117:426-436.   DOI
122 Wang HM, Chen CY, Wen ZH. Identifying melanogenesis inhibitors from Cinnamomum subavenium with in vitro and in vivo screening systems by targeting the human tyrosinase. Exp. Dermatol. 2011;20:242-248.   DOI
123 Thomas NV, Kim SK. Beneficial effects of marine algal compounds in cosmeceuticals. Mar. Drugs 2013;11:146-164.   DOI
124 Aditya T, Bitu G, Eleanor MG. The role of algae in pharmaceutical development. J. Pharm. Nanotechnol. 2016;4:82-89.
125 Ariede MB, Candido TM, Jacome ALM, Velasco MVR, de Carvalho JCM, Baby AR. Cosmetic attributes of algae - A review. Algal Res. 2017;25:483-487.   DOI
126 Abedin RM, Taha HM. Antibacterial and antifungal activity of cyanobacteria and green microalgae. Evaluation of medium components by Plackett-Burman design for antimicrobial activity of Spirulina platensis. Glo. J. Biotechnol. Biochem. 2008;3:22-31.
127 Sousa I, Gouveia L, Batista P, Raymundo A, Bandarra N. Microalgae in novel food products. In: Konstantinos N, Papadopoulos, eds. Food chemistry research developments. Nova Science Publishers; 2008. p. 75-112.
128 Kagan ML, Matulka RA. Safety assessment of the microalgae Nannochloropsis oculata. Toxicol. Rep. 2015;2:617-623.   DOI
129 Sanchez JF, Fernandez-Sevilla JM, Acien FG, Ceron MC, Perez-Parra J, Molina-Grima E. Biomass and lutein productivity of Scenedesmus almeriensis: Influence of irradiance, dilution rate and temperature. Appl. Microbiol. Biotechnol. 2008;79:719-729.   DOI
130 Babuskin S, Krishnan KR, Babu PAS, Sivarajan M, Sukumar M. Functional foods enriched with marine microalga Nannochloropsis oculata as a source of [omega]-3 fatty acids. Food Technol. Biotechol. 2014;52:292-299.
131 Molina E, Fernandez JM, Acien FG, et al. Production of lutein from the microalga Scenedesmus almeriensis in an industrial size photobioreactor: Case study. In: Oral presentation at the 10th International Conference on Applied Phycology, Kunming, China; 2005.
132 Panis G, Carreon JR. Commercial astaxanthin production derived by green alga Haematococcus pluvialis: A microalgae process model and a techno-economic assessment all through production line. Algal Res. 2016;18:175-190.   DOI
133 Shah M, Mahfuzur R, Liang Y, Cheng JJ, Daroch M. Astaxanthin-producing green microalga Haematococcus pluvialis: From single cell to high value commercial products. Front. Plant Sci. 2016;7:1-28.
134 Cuellar-Bermudez SP, Aguilar-Hernandez I, Cardenas-Chavez DL, Ornelas-Soto N, Romero-Ogawa MA, Parra- Saldivar R. Extraction and purification of high-value metabolites from microalgae: Essential lipids, astaxanthin and phycobiliproteins. Microb. Biotechnol. 2015;8:190-209.   DOI
135 Pisal DS, Lele SS. Carotenoid production from microalga, Dunaliella salina. Ind. J. Biotechnol. 2005;4:476-483.
136 Sajilata M, Singhal R, Kamat M. The carotenoid pigment zeaxanthin - A review. Compr. Rev. Food Sci. Food Safe. 2008;7:29-49.   DOI
137 Granado-Lorencio F, Herrero-Barbudo C, Acien-Fernandez G, et al. In vitro bioaccesibility of lutein and zeaxanthin from the microalgae Scenedesmus almeriensis. Food Chem. 2009;114:747-752.   DOI
138 Guedes AC, Amaro HM, Malcata X. Microalgae as sources of carotenoids. Mar. Drugs 2011;9:625-644.   DOI