Browse > Article
http://dx.doi.org/10.4491/eer.2011.16.3.137

Ultrasonic Degradation of Endocrine Disrupting Compounds in Seawater and Brackish Water  

Park, So-Young (School of Public Health, Seoul National University)
Park, Jong-Sung (Department of Chemistry and Environmental Sciences, Korea Army Academy at Young-Cheon)
Lee, Ha-Yoon (Department of Chemistry and Environmental Sciences, Korea Army Academy at Young-Cheon)
Heo, Ji-Yong (Department of Engineering, University of South Carolina)
Yoon, Yeo-Min (Department of Engineering, University of South Carolina)
Choi, Kyung-Ho (School of Public Health, Seoul National University)
Her, Nam-Guk (Department of Chemistry and Environmental Sciences, Korea Army Academy at Young-Cheon)
Publication Information
Environmental Engineering Research / v.16, no.3, 2011 , pp. 137-148 More about this Journal
Abstract
In this study, a series of experiments was conducted on the relative degradation of commonly known endocrine-disrupting compounds such as bisphenol A (BPA) and $17{\alpha}$-ethinyl estradiol (EE2) in a single-component aqueous solution using 28 and 580 kHz ultrasonic reactors. The experiments were conducted with three different types of model water: deionized water (DI), synthetic brackish water (SBW), and synthetic seawater (SSW) at pH 4, 7.5, and 11 in the presence of inert glass beads and humic acids. Significantly higher sonochemical degradation (93-97% for BPA) occurred at 580 kHz than at 28 kHz (43-61% for BPA), regardless of water type. A slightly higher degradation was observed for EE2 compared to that of BPA. The degradation rate of BPA and EE2 in DI water, SBW, and SSW after 30 min of ultrasound irradiation at 580 kHz increased slightly with the increase in pH from 4 (0.073-0.091 $min^{-1}$ for BPA and 0.081-0.094 $min^{-1}$ for EE2) to 7.5 (0.087-0.114 $min^{-1}$ for BPA and 0.092-0.124 $min^{-1}$ for EE2). In contrast, significant degradation was observed at pH 11 (0.149-0.221 $min^{-1}$ for BPA and 0.147-0.228 $min^{-1}$ for EE2). For the given frequencies of 28 and 580 kHz, the degradation rate increased in the presence of glass beads (0.1 mm and 25 g) for both BPA and EE2: 0.018-0.107 $min^{-1}$ without beads and 0.052-0.142 $min^{-1}$ with beads for BPA; 0.021-0.111 $min^{-1}$ without beads and 0.054-0.136 $min^{-1}$ with beads for EE2. A slight increase in degradation of both BPA and EE2 was found as the concentration of dissolved organic carbon (DOC, humic acids) increased in both SBW and SSW: 0.107-0.115 $min^{-1}$ in SBW and 0.087-0.101 $min^{-1}$ in SSW for BPA; 0.111-0.111 $min^{-1}$ in SWB and 0.092-0.105 $min^{-1}$ in SSW for EE2. After 30 min of sonicating the humic acid solution, DOC removal varied depending on the water type: 27% (3 mg $L^{-1}$) and 7% (10 mg $L^{-1}$) in SBW and 7% (3 mg $L^{-1}$) and 4% (10 mg $L^{-1}$) in SSW.
Keywords
Bisphenol A; Brackish water; Endocrine disrupting compounds; Seawater; Sonochemical degradation; $17{\alpha}$-ethinyl estradiol;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Shimizu N, Ogino C, Dadjour MF, Murata T. Sonocatalytic degradation of methylene blue with $TiO_2$ pellets in water. Ultrason. Sonochem. 2007;14:184-190.   DOI   ScienceOn
2 Wang J, Pan Z, Zhang Z, et al. Sonocatalytic degradation of methyl parathion in the presence of nanometer and ordinary anatase titanium dioxide catalysts and comparison of their sonocatalytic abilities. Ultrason. Sonochem. 2006;13:493-500.   DOI   ScienceOn
3 Segebarth N, Eulaerts O, Reisse J, Crum LA, Matula TJ. Correlation between acoustic cavitation noise, bubble population, and sonochemistry. J. Phys. Chem. B 2002;106:9181-9190.
4 Crum LA. Comments on the evolving field of sonochemistry by a cavitation physicist. Ultrason. Sonochem. 1995;2:S147-S152.   DOI   ScienceOn
5 Burdin F, Tsochatzidis NA, Guiraud P, Wilhelm AM, Delmas H. Characterisation of the acoustic cavitation cloud by two laser techniques. Ultrason. Sonochem. 1999;6:43-51.   DOI   ScienceOn
6 Petrier C, Lamy MF, Francony A, et al. Sonochemical degradation of phenol in dilute aqueous solutions: comparison of the reaction rates at 20 and 487 kHz. J. Phys. Chem. 1994;98:10514-10520.   DOI   ScienceOn
7 Gogate PR. Treatment of wastewater streams containing phenolic compounds using hybrid techniques based on cavitation: a review of the current status and the way forward. Ultrason. Sonochem. 2008;15:1-15.   DOI   ScienceOn
8 Kidak R, Ince NH. Ultrasonic destruction of phenol and substituted phenols: a review of current research. Ultrason. Sonochem. 2006;13:195-199.   DOI   ScienceOn
9 Kotronarou A, Mills G, Hoffmann MR. Ultrasonic irradiation of p-nitrophenol in aqueous solution. J. Phys. Chem. 1991;95:3630-3638.   DOI
10 Ma J, Graham NJD. Degradation of atrazine by manganese-catalysed ozonation--influence of radical scavengers. Water Res. 2000;34:3822-3828.   DOI   ScienceOn
11 Cheng J, Vecitis CD, Park H, Mader BT, Hoffmann MR. Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in landfill groundwater: environmental matrix effects. Environ. Sci. Technol. 2008;42:8057-8063.   DOI   ScienceOn
12 Torres RA, Petrier C, Combet E, Carrier M, Pulgarin C. Ultrasonic cavitation applied to the treatment of bisphenol A. Effect of sonochemical parameters and analysis of BPA byproducts. Ultrason. Sonochem. 2008;15:605-611.   DOI   ScienceOn
13 Torres RA, Petrier C, Combet E, Moulet F, Pulgarin C. Bisphenol A mineralization by integrated ultrasound-UV-iron (II) treatment. Environ. Sci. Technol. 2007;41:297-302.   DOI   ScienceOn
14 Huber MM, Canonica S, Park GY, von Gunten U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ. Sci. Technol. 2003;37:1016-1024.   DOI   ScienceOn
15 Naddeo V, Belgiorno V, Napoli RMA. Behaviour of natural organic mater during ultrasonic irradiation. Desalination 2007;210:175-182.   DOI   ScienceOn
16 De Bel E, Dewulf J, Witte BD, Van Langenhove H, Janssen C. Influence of pH on the sonolysis of ciprofloxacin: biodegradability, ecotoxicity and antibiotic activity of its degradation products. Chemosphere 2009;77:291-295.   DOI   ScienceOn
17 Fu H, Suri RPS, Chimchirian RF, Helmig E, Constable R. Ultrasound-induced destruction of low levels of estrogen hormones in aqueous solutions. Environ. Sci. Technol. 2007;41:5869-5874.   DOI   ScienceOn
18 Syracuse Research Corporation. Interactive PhysProp database demo [Internet]. Syracuse, NY: Syracuse Research Corporation; c2011 [cited 2011 Feb 4]. Available from: http://www.syrres.com/what-we-do/databaseforms.aspx?id=386.
19 Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P. Reverse osmosis desalination: water sources, technology, and today's challenges. Water Res. 2009;43:2317-2348.   DOI   ScienceOn
20 Al-Rasheed R, Cardin DJ. Photocatalytic degradation of humic acid in saline waters. Part 1. Artificial seawater: influence of $TiO_2$, temperature, pH, and air-flow. Chemosphere 2003;51:925-933.   DOI   ScienceOn
21 Ahrer W, Scherwenk E, Buchberger W. Determination of drug residues in water by the combination of liquid chromatography or capillary electrophoresis with electrospray mass spectrometry. J. Chromatogr. 2001;910:69-78.   DOI   ScienceOn
22 Kormann C, Bahnemann DW, Hoffmann MR. Photocatalytic production of $H_2O_2$ and organic peroxides in aqueous suspensions of $TiO_2$, ZnO, and desert sand. Environ. Sci. Technol. 1988;22:798-806.   DOI   ScienceOn
23 Suslick KS, Schubert PF, Goodale JW. Sonochemistry and sonocatalysis of iron carbonyls. J. Am. Chem. Soc. 1981;103:7342-7344.   DOI
24 Yoon Y, Amy G, Cho J, Her N. Effects of retained natural organic matter (NOM) on NOM rejection and membrane flux decline with nanofiltration and ultrafiltration. Desalination 2005;173:209-221.   DOI   ScienceOn
25 Yu Z, Peldszus S, Huck PM. Adsorption characteristics of selected pharmaceuticals and an endocrine disrupting compound-Naproxen, carbamazepine and nonylphenol-on activated carbon. Water Res. 2008;42:2873-2882.   DOI   ScienceOn
26 Kimura K, Iwase T, Kita S, Watanabe Y. Influence of residual organic macromolecules produced in biological wastewater treatment processes on removal of pharmaceuticals by NF/RO membranes. Water Res. 2009;43:3751-3758.   DOI   ScienceOn
27 Van Geluwea S, Braekena L, Vinckierb C, Van der Bruggen B. Ozonation and perozonation of humic acids in nanofiltration concentrates. Desalin. Water Treat. 2009;6:217-221.   DOI
28 Yoon Y, Westerhoff P, Snyder SA. Adsorption of 3H-labeled $17-\beta$ estradiol on powdered activated carbon. Water Air Soil Pollut. 2005;166:343-351.   DOI
29 Yoon Y, Westerhoff P, Snyder SA, Wert EC. Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products. J. Membr. Sci. 2006;270:88-100.   DOI   ScienceOn
30 Suri RPS, Singh TS, Abburi S. Influence of alkalinity and salinity on the sonochemical degradation of estrogen hormones in aqueous solution. Environ. Sci. Technol. 2010;44:1373-1379.   DOI   ScienceOn
31 Westerhoff P, Yoon Y, Snyder S, Wert E. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ. Sci. Technol. 2005;39:6649-6663.   DOI   ScienceOn
32 Adewuyi YG. Sonochemistry: environmental science and engineering applications. Ind. Eng. Chem. Res. 2001;40:4681-4715.   DOI   ScienceOn
33 Trenholm RA, Vanderford BJ, Drewes JE, Snyder SA. Determination of household chemicals using gas chromatography and liquid chromatography with tandem mass spectrometry. J. Chromatogr. 2008;1190:253-262.   DOI   ScienceOn
34 Vanderford BJ, Snyder SA. Analysis of pharmaceuticals in water by isotope dilution liquid chromatography/tandem mass spectrometry. Environ. Sci. Technol. 2006;40:7312-7320.   DOI   ScienceOn
35 Alum A, Yoon Y, Westerhoff P, Abbaszadegan M. Oxidation of bisphenol A, $17\beta$-estradiol, and $17\alpha$-ethynyl estradiol and byproduct estrogenicity. Environ. Toxicol. 2004;19:257-264.   DOI   ScienceOn
36 De Gusseme B, Pycke B, Hennebel T, et al. Biological removal of $17\alpha$-ethinylestradiol by a nitrifier enrichment culture in a membrane bioreactor. Water Res. 2009;43:2493-2503.   DOI   ScienceOn
37 Zhang TC, Emary SC. Jar tests for evaluation of atrazine removal at drinking water treatment plants. Environ. Eng. Sci. 1999;16:417-432.   DOI
38 Yoon Y, Westerhoff P, Snyder SA, Esparza M. HPLC-fluorescence detection and adsorption of bisphenol A, $17\beta$-estradiol, and $17\alpha$-ethynyl estradiol on powdered activated carbon. Water Res. 2003;37:3530-3537.   DOI   ScienceOn
39 An D, Song JX, Gao W, Chen GG, Gao NY. Molecular weight distribution for nom in different drinking water treatment processes. Desalin. Water Treat. 2009;5:267-274.   DOI
40 Snyder SA, Leising J, Westerhoff P, Yoon Y, Mash H, Vanderford B. Biological and physical attenuation of endocrine disruptors and pharmaceuticals: implications for water reuse. Ground Water Monit. Remediat. 2004;24:108-118.   DOI   ScienceOn
41 Campinas M, Rosa MJ. Comparing PAC/UF and conventional clarification with PAC for removing microcystins from natural waters. Desalin. Water Treat. 2010;16:120-128.   DOI
42 Prihasto N, Liu QF, Kim SH. Pre-treatment strategies for seawater desalination by reverse osmosis system. Desalination 2009;249:308-316.   DOI   ScienceOn
43 Al-Amoudi AS. Factors affecting natural organic matter (NOM) and scaling fouling in NF membranes: a review. Desalination 2010;259:1-10.   DOI   ScienceOn
44 Cronan CS, Aiken GR. Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Park, New York. Geochim. Cosmochim. Acta 1985;49:1697-1705.   DOI   ScienceOn
45 Heemken OP, Reincke H, Stachel B, Theobald N. The occurrence of xenoestrogens in the Elbe river and the North Sea. Chemosphere 2001;45:245-259.   DOI   ScienceOn
46 Baronti C, Curini R, D'Ascenzo G, Di Corcia A, Gentili A, Samperi R. Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. Environ. Sci. Technol. 2000;34:5059-5066.   DOI   ScienceOn
47 Snyder SA, Westerhoff P, Yoon Y, Sedlak DL. Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry. Environ. Eng. Sci. 2003;20:449-469.   DOI   ScienceOn
48 Yoon Y, Ryu J, Oh J, Choi BG, Snyder SA. Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, South Korea). Sci. Total Environ. 2010;408:636-643.   DOI   ScienceOn
49 Snyder S, Vanderford B, Pearson R, Quinones O, Yoon Y. Analytical methods used to measure endocrine disrupting compounds in water. Pract. Period. Hazard. Toxic Radioact. Waste Manage. 2003;7:224-234.   DOI   ScienceOn
50 Adams C, Wang Y, Loftin K, Meyer M. Removal of antibiotics from surface and distilled water in conventional water treatment processes. J. Environ. Eng. 2002;128:253-260.   DOI   ScienceOn
51 Bai Lx, Xu Wl, Tian Z, Li Nw. A high-speed photographic study of ultrasonic cavitation near rigid boundary. J. Hydrodyn. 2008;20:637-644.   DOI   ScienceOn
52 Service RF. Desalination freshens up. Science 2006;313:1088-1090.   DOI   ScienceOn
53 Sanza MA, Bonnelyea V, Cremerb G. Fujairah reverse osmosis plant: 2 years of operation. Desalination 2007;203:91-99.   DOI   ScienceOn
54 Sauvet-Goichon B. Ashkelon desalination plant--a successful challenge. Desalination 2007;203:75-81.   DOI   ScienceOn
55 Lee J, Ashokkumar M, Kentish S, Grieser F. Determination of the size distribution of sonoluminescence bubbles in a pulsed acoustic field. J. Am. Chem. Soc. 2005;127:16810-16811.   DOI   ScienceOn
56 Tsochatzidis NA, Guiraud P, Wilhelm AM, Delmas H. Determination of velocity, size and concentration of ultrasonic cavitation bubbles by the phase-Doppler technique. Chem. Eng. Sci. 2001;56:1831-1840.   DOI   ScienceOn
57 Kanthale P, Ashokkumar M, Grieser F. Sonoluminescence, sonochemistry ($H_2O_2$ yield) and bubble dynamics: frequency and power effects. Ultrason. Sonochem. 2008;15:143-150.   DOI   ScienceOn
58 Taylor E Jr., Cook BB, Tarr MA. Dissolved organic matter inhibition of sonochemical degradation of aqueous polycyclic aromatic hydrocarbons. Ultrason. Sonochem. 1999;6:175-183.   DOI   ScienceOn
59 Kosky PG, Silva J M, Guggenheim EA. The aqueous phase in the interfacial synthesis of polycarbonates. 1. Ionic equilibria and experimental solubilities in the BPA-NaOH-$H_2O$ system. Industrial & Engineering Chemistry Research 1991;30:462-467.   DOI
60 Joseph JM, Destaillats H, Hung HM, Hoffmann MR. The sonochemical degradation of azobenzene and related azo dyes: rate enhancements via Fenton's reactions. J. Phys. Chem. A 2000;104:301-307.   DOI   ScienceOn
61 Behnajady MA, Modirshahla N, Tabrizi SB, Molanee S. Ultrasonic degradation of Rhodamine B in aqueous solution: influence of operational parameters. J. Hazard. Mater. 2008;152:381-386.   DOI   ScienceOn
62 Ince NH, Tezcanli G, Belen RK, Apikyan IG. Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications. Appl. Catal. B Environ. 2001;29:167-176.   DOI   ScienceOn
63 Furman O, Laine DF, Blumenfeld A, et al. Enhanced reactivity of superoxide in water--solid matrices. Environ. Sci. Technol. 2009;43:1528-1533.   DOI   ScienceOn
64 Asakura Y, Nishida T, Matsuoka T, Koda S. Effects of ultrasonic frequency and liquid height on sonochemical efficiency of large-scale sonochemical reactors. Ultrason. Sonochem. 2008;15:244-250.   DOI   ScienceOn