Browse > Article
http://dx.doi.org/10.4491/eer.2009.14.1.019

Analysis of Total Bacteria, Enteric Members of γ-proteobacteria and Microbial Communities in Seawater as Indirect Indicators for Quantifying Biofouling  

Lee, Jin-Wook (Bio-Environmental Engineering Lab. (BEEL), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
Kim, Sung-Min (Bio-Environmental Engineering Lab. (BEEL), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
Jung, Ji-Yeon (Bio-Environmental Engineering Lab. (BEEL), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
Oh, Byung-Soo (Center for Seawater Desalination Plant, Gwangju Institute of Science and Technology (GIST))
Kim, In S. (Center for Seawater Desalination Plant, Gwangju Institute of Science and Technology (GIST))
Hong, Soon-Kang (Department of Fire Service Administration, Chodang University)
Publication Information
Abstract
In this study, total bacteria, enteric members of the $\gamma$-proteobacteria, and microbial communities in seawater were analyzed as indirect indicators for quantifying biofouling. Biomass in seawater can significantly affect feed water pretreatment and membrane biofouling of reverse osmosis desalination processes. The purpose of this paper is to investigate microbiological quantity and quality of seawater at the potential intake of a desalination plant. For this analysis, the total direct cell count (TDC) using 4'-6-diamidino-2-phenylindole (DAPI)-staining and DNA-based real-time PCR were used to quantify the total bacteria and relative content of enteric members of $\gamma$-proteobacteria in seawater, respectively. In addition, microbial communities were examined using 16S rRNA gene cloning and bacterial isolation to identify the most abundant bacteria for a further biofouling study. The experimental results of this study identified about $10^6$ cells/mL of (total) bacteria, $10^5$ 16S rRNA gene copies/mL of enteric $\gamma$-proteobacteria, and the presence of more than 20 groups of bacteria.
Keywords
Seawater; Biomass; Microbial community; Biofouling; Membrane;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Vrouwenvelder, J. S. and van der Kooij, D., “Diagnosis, prediction and prevention of biofouling of NF and RO membranes,” Desalination, 139(1-3), 65-71 (2001)   DOI   ScienceOn
2 Kim, I. S. and Jang, N., “The effect of calcium on the membrane biofouling in the membrane bioreactor (MBR),” Water Res., 40(14), 2756-2764 (2006)   DOI   ScienceOn
3 Alawadhi, A. A., “Pretreatment plant design-Key to a successful reverse osmosis desalination plant,” Desalination, 110, 1-10 (1997)   DOI   ScienceOn
4 Veza, J. M., Oritz, M., Sadhwani, J. J., Gonzalez, J. E., and Santana, F. J., “Measurement of biofouing in seawater: some practical tests,” Desalination, 220, 326-334 (2008)   DOI   ScienceOn
5 Ivnitsky, H., Katz, I., Minz, D., Shimoni, E., Chen, Y., Tarchitzky, J., Semiat, R., and Dosoretz, C. G., “Characterization of membrane biofouling in nanofiltration processes of wastewater treatment,” Desalination, 185(1-3), 255-268 (2005)   DOI   ScienceOn
6 Al-Ahmad, M., Abdul Aleem, F. A., Mutiri, A., and Ubaisy, A., “Biofouling in RO membrane systems Part 1: Fundamentals and control,” Desalination, 132(1-3), 173-179 (2000)   DOI   ScienceOn
7 Pommepuy, M., Butin, M., Derrien, A., Gourmelon, M., Colwell, R. R., and Cormier, M., “Retention of enteropathogenicity by viable but nonculturable Escherichia coli exposed to seawater and sunlight,” Appl. Environ. Microbiol., 62(12), 4621-4626 (1996)
8 Abdul Azis, P. K., Al-Tisan, I., and Sasikumar, N., “Biofouling potential and environmental factors of seawater at a desalination plant intake,” Desalination, 135(1-3), 69-82 (2001)   DOI   ScienceOn
9 Jang, N., Shon, H., Ren, X., Vigneswaran, S., and Kim, I. S., “Characteristics of bio-foulants in the membrane bioreactor,” Desalination, 200(1-3), 201-202 (2006)   DOI   ScienceOn
10 Azis, P. K. A., Al-Tisan, I., Al-Daili, M., Green, T. N., Dalvi, A. G. I., and Javeed, M. A., “Effects on environment on source water for desalination plants on the eastern coast of Saudi Arabia,” Desalination, 132, 29-40 (2000)   DOI   ScienceOn
11 Cottrell, M. T. and Kirchman, D. L., “Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization,” Appl. Environ. Microbiol., 66(12), 5116-5122 (2000)   DOI   ScienceOn
12 Frias-Lopez, J., Zerkle, A. L., Bonheyo, G. T., and Fouke, B. W., “Partitioning of bacterial communities between seawater and healthy, black band diseased, and dead coral surfaces,” Appl. Environ. Microbiol., 68(5), 2214-2228 (2002)   DOI   ScienceOn
13 Lyons, S. R., Griffen, A. L., and Leys, E. J., “Quantitative real-time PCR for Porphyromonas gingivalis and total bacteria,” J. Clin. Microbiol., 38(6), 2362-2365 (2000)
14 Acinas, S. G., Marcelino, L. A., Klepac-Ceraj, V., and Polz, M. F., “Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons,” J. Bacteriol., 186(9), 2629-2635 (2004)   DOI   ScienceOn
15 Shahalam, A. M., Al-Harthy, A., and Al-Zawhry, A., “Feed water treatment in RO systems: unit processes in the Middle East,” Desalination, 150, 235-245 (2002)   DOI   ScienceOn
16 Bach, H. J., Tomanova, J., Schloter, M., and Munch, J. C., “Enumeration of total bacteria and bacteria with genes for proteolytic activity in pure cultures and in environmental samples by quantitative PCR mediated amplification,” J. Microbiol. Methods, 49(3), 235-245 (2002)   DOI   ScienceOn
17 Jochem, F. J., “Morphology and DNA content of bacterioplankton in the northern Gulf of Mexico: analysis by epifluorescence microscopy and flow cytometry,” Aquatic Microbial Ecology, 5, 9-194 (2001)
18 Labrenz, M., Brettar, I., Christen, R., Flavier, S., Botel, J., and Höfle, M. G., “Development and application of a realtime PCR approach for quantification of uncultured bacteria bacteria in the central Baltic Sea,” Appl. Environ. Microbiol., 70(8), 4971-4979 (2004)   DOI   ScienceOn
19 Ausubel, F. M., Brent, R., E., K. R., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K., Short protocols in molecular biology, 2nd ed., John Wiley & Sons, New York (1992)
20 Weisburg, W. G., Barns, S. M., Pelletier, D. A., and Lane, D. J., “16S ribosomal DNA amplification for phylogenetic study,” J. Bacteriol., 173(2), 697-703 (1991)
21 Watt, S., Aesch, B., Lanotte, P., Tranquart, F., and Quentin, R., “Viral and bacterial DNA in carotid atherosclerotic lesions,” Eur. J. Clin. Microbiol. Infect. Dis., 22(2), 99-105 (2003)   DOI
22 Harmsen, D., Dostal, S., Roth, A., Niemann, S., Rothganger, J., Sammeth, M., Albert, J., Frosch, M., and Richter, E., “RIDOM: Comprehensive and public sequence database for identification of Mycobacterium species,” BMC Infect. Dis., 3, 10 (2003)   DOI   ScienceOn
23 He, J. and Jiang, S., “Quantification of Enterococci and Human Adenoviruses in Environmental Samples by Realtime PCR”, Applied and Environmental Microbiology, 71(5), 2250-2255 (2005).   DOI   ScienceOn
24 Saeed, M. O., Jamaluddin, A. T., Tisan, I. A., Lawrence, D. A., Al-Amri, M. M., and Chida, K., “Biofouling in a seawater reverse osmosis plant on the Red Sea coast, Saudi Arabia,” Desalination, 128(2), 177-190 (2000)   DOI   ScienceOn
25 Jang, N. J., Yeo, Y. H., Hwang, M. H., Vigneswaran, S., Cho, J. W., and Kim, I. S., “The effect of air bubbles from dissolved gases on the membrane fouling in the hollow fiber submerged membrane bio-reactor (SMBR),” Environ. Eng. Res., 11(2), 91-98 (2006)   DOI   ScienceOn
26 Schneider, R. P., Ferreira, L. M., Binder, P., Bejarano, E. M., Goes, K. P., Slongo, E., Machado, C. R., and Rosa, G. M. Z., “Dynamics of organic carbon and of bacterial populations in a conventional pretreatment train of a reverse osmosis unit experiencing severe biofouling,” J. Membr. Sci., 266(1-2), 18-29 (2005)   DOI   ScienceOn