Browse > Article
http://dx.doi.org/10.5574/JAROE.2018.4.4.174

Designing a Hydro-Structural Ship Model to Experimentally Measure its Vertical Bending and Torsional Vibrations  

Houtani, Hidetaka (Fluids Engineering & Ship Performance Evaluation Department, National Maritime Research Institute)
Komoriyama, Yusuke (Structural Strength Evaluation Department, National Maritime Research Institute)
Matsui, Sadaoki (Structural Strength Evaluation Department, National Maritime Research Institute)
Oka, Masayoshi (Structural Strength Evaluation Department, National Maritime Research Institute)
Sawada, Hiroshi (Fluids Engineering & Ship Performance Evaluation Department, National Maritime Research Institute)
Tanaka, Yoshiteru (Structural Strength Evaluation Department, National Maritime Research Institute)
Tanizawa, Katsuji (Fluids Engineering & Ship Performance Evaluation Department, National Maritime Research Institute)
Publication Information
Journal of Advanced Research in Ocean Engineering / v.4, no.4, 2018 , pp. 174-184 More about this Journal
Abstract
We herein propose a new design procedure of a flexible container ship model where the vertical bending and torsional vibration modes are similar to its prototype. To achieve similarity in torsional vibration mode shapes, the height of the shear center of the model must be located below the bottom hull, similar to an actual container ship with large opening decks. Therefore, we designed a ship model by imparting appropriate stiffness to the hull, using urethane foam without a backbone. We built a container ship model according to this design strategy and validated its dynamic elastic properties using a decay test. We measured wave-induced structural vibrations and present the results of tank experiments in regular and freak waves.
Keywords
Hydro-structural model; torsion; whipping; freak wave; tank experiment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bigot, F., Derbanne, Q., Sireta, F. X., Malenica, S., & Tuitman, J. T., "Global Hydroelastic Ship Response Comparison of numerical model and WILS model tests," In The Twenty-first International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers, pp.477-485, 2011.
2 Fujimoto, W., Waseda, T., & Webb, A. "Impact of the four-wave quasi-resonance on freak wave shapes in the ocean," Ocean Dynamics, Vol.69 (1), pp.101-121, 2019.   DOI
3 Fukasawa, T., Yamamoto, Y., Fujino, M., & Motora, S., "Motion and longitudinal strength of a ship in head sea and the effects of non-linearities (4th report)," Journal of the Society of Naval Architects of Japan, Vol.150, pp.308-314, 1981.
4 Hong, S. Y., & Kim, B. W., "Experimental investigations of higher-order springing and whipping-WILS project," International Journal of Naval Architecture and Ocean Engineering, Vol.6 (4), pp.1160-1181, 2014.   DOI
5 Hong, S.Y., Kim, B.W., Nam, B.W., "Experimental study on torsion springing and whipping of large container ship," International Journal of Offshore and Polar Engineering, Vol.22 (2), pp. 97-107, 2012.
6 Houtani, H., Waseda, T., Fujimoto, W., Kiyomatsu, K., & Tanizawa, K., "Generation of a spatially periodic directional wave field in a rectangular wave basin based on higher-order spectral simulation," Ocean Engineering, Vol.169, pp.428-441, 2018.   DOI
7 Iijima, K., Hermundstad, O. A., Zhu, S., & Moan, T., "Symmetric and antisymmetric vibrations of a hydroelastically scaled model," Proc. Hydroelasticity in Marine Technology, University of Southampton, UK., pp.173-182, 2009.
8 ITTC: 7.5-02 07-02.6 Rev.01, ITTC's Recommended Procedures and Guidelines: Global Loads Seakeeping Procedure, 2017.
9 Oka, M., Hattori, K. & Ogawa, Y., "A realization of hull girder vibration in waves by means of new designed back-bone model," In the 10th Research Presentation Meeting of National Maritime Research Institute, pp.297-298, 2010. (in Japanese)
10 Oka, M., Oka, S. & Ogawa, Y., "An experimental study on wave loads of a large container ship and its hydroelastic vibration," Proc. Hydroelasticity in Marine Technology, University of Southampton, UK, pp.183-192, 2009.
11 Remy, F., Molin, B., & Ledoux, A., "Experimental and numerical study of the wave response of a flexible barge," In 4th International Conference on Hydroelasticity in Marine Technology, pp.255-264, 2006.
12 Sawada, H., Watanabe, I., Yamamoto, T., Tanizawa, K., Ishida, S. Ueno, M. & Miyamoto, M., "On an elastic model to simulate elastic hull responses of ships," Papers of Ship Research Institute, Vol. 24 (2), pp.152-165, 1987. (in Japanese)
13 Terazawa, K., "Ship Structural Mechanics (the third edition)," Kaibundo, 1981. (in Japanese)
14 Zhu, S., Wu, M., & Moan, T., "Experimental investigation of hull girder vibrations of a flexible backbone model in bending and torsion," Applied Ocean Research, Vol. 33(4), pp.252-274, 2011.   DOI
15 Tiphine, E., Bigot, F., De-Lauzon, J., Sireta, F. X., Chung, Y. S., & Malenica, S., "Comparisons of experimental and numerical results for global hydroelastic response of container ship within the WILS III JIP," In The Twenty-fourth International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers, pp.764-773. 2014.
16 Waseda, T., Shinchi, M., Nishida, T., Tamura, H., Miyazawa, Y., Kawai, Y., Ichikawa, H., Tomita, H., Nagano, A. & Taniguchi, K., "GPS-based wave observation using a moored oceanographic buoy in the deep ocean," In Proceedings of the Twenty-First International Offshore and Polar Engineering Conference, Maui, HI, USA, pp. 19-24, 2011.
17 Wu, Y. S., Chen, R. Z., & Lin, J. R., "Experimental technique of hydroelastic ship model," Hydroelasticity in Marine Technology, pp.131-142, 2003.