Browse > Article
http://dx.doi.org/10.1016/j.jiec.2018.06.020

Thiadiazole-thione surfactants: Preparation, flotation performance and adsorption mechanism to malachite  

Huang, Yaoguo (College of Chemistry and Chemical Engineering, Central South University)
Liu, Guangyi (College of Chemistry and Chemical Engineering, Central South University)
Liu, Jun (College of Chemistry and Chemical Engineering, Central South University)
Yang, Xianglin (College of Chemistry and Chemical Engineering, Central South University)
Zhang, Zhiyong (College of Chemistry and Chemical Engineering, Central South University)
Publication Information
Journal of Industrial and Engineering Chemistry / v.67, no., 2018 , pp. 99-108 More about this Journal
Abstract
In this paper, novel thiadiazole-thione surfactants including 5-heptyl-1,3,4-thiadiazole-2-thione (HpSDT), 5-phenyl-1,3,4-thiadiazole-2-thione (PSDT) and 5-(2-hydroxyphenyl)-1,3,4-thiadiazole-2-thione (HPhSDT) were synthesized and originally introduced as collectors in froth flotation. Microflotation tests showed that HpSDT exhibited better flotation response to malachite than PSDT and HPhSDT, as well as excellent flotation selectivity against quartz. The contact angle results inferred that the hydrophobization intensity of these collectors toward malachite was in the order as HpSDT> PSDT> HPhSDT. ${\zeta}$-potential recommended a chemisorption of HpSDT on malachite surfaces. FTIR deduced that cupric or cuprous atoms might bond with the S and N atoms of HpSDT to form a conjugated ring. XPS further gave an additional evidence that HpSDT-Cu(I) complexes were produced on malachite surfaces via combining surface Cu atoms with HpSDT's N and S atoms, with reducing surface Cu(II) to Cu (I). The tighter orientation arrangement on malachite and stronger hydrophobicity rendered HpSDT to possess better flotation affinity toward malachite than PSDT and HPhSDT.
Keywords
Thiadiazole-thione; Chelating collector; Flotation; Malachite; Adsorption mechanism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E.E. Chufan, J.C. Pedregosa, J. Borras, Vib. Spectrosc. 15 (1997) 191.   DOI
2 L. Huang, J. Shen, J. Ren, Q.J. Meng, T. Yu, Chin. Sci. Bull. 46 (2001) 387.   DOI
3 Q. Feng, W. Zhao, S. Wen, Q. Cao, Sep. Purif. Technol. 178 (2017) 193.   DOI
4 Q. Feng, S. Wen, J. Deng, W. Zhao, Appl. Surf. Sci. 425 (2017) 8.   DOI
5 G. Liu, Z. Qiu, J. Wang, Q. Liu, J. Xiao, H. Zeng, H. Zhong, Z. Xu, J. Colloid Interface Sci. 437 (2015) 42.   DOI
6 J. Zhou, S. Chen, L. Zhang, Y. Feng, H. Zhai, J. Electroanal. Chem. 612 (2008) 257.   DOI
7 P. Kalimuthu, S.A. John, Electrochem. Commun. 11 (2009) 367.   DOI
8 Z. He, G. Liu, X. Yang, W. Liu, J. Ind. Eng. Chem. 37 (2016) 107.   DOI
9 C.D. Taylor, A. Chandra, J. Vera, N. Sridhar, J. Electrochem. Soc. 162 (2015) C347.   DOI
10 L. Xu, H. Wu, F. Dong, L. Wang, Z. Wang, J. Xiao, Miner. Eng. 41 (2013) 41.   DOI
11 L. Deng, H. Zhong, S. Wang, G. Liu, Sep. Purif. Technol. 145 (2015) 8.   DOI
12 X. Yang, S. Liu, G. Liu, H. Zhong, J. Ind. Eng. Chem. 46 (2017) 404.   DOI
13 S. Liu, H. Zhong, G. Liu, Z. Xu, J. Colloid Interface Sci. 512 (2018) 701.   DOI
14 S. Liu, G. Liu, H. Zhong, X. Yang, J. Ind. Eng. Chem. 52 (2017) 359.   DOI
15 C.C.D. Witt, F.V. Batchelder, J. Am. Chem. Soc. 61 (1939) 1250.   DOI
16 H. Xu, H. Zhong, S. Wang, Y. Niu, G. Liu, Miner. Eng. 66 (2014) 173.
17 J. Xiao, G. Liu, H. Zhong, Int. J. Miner. Process. 166 (2017) 53.   DOI
18 G.A. Hope, A.N. Buckley, G.K. Parker, A. Numprasanthai, R. Woods, J. McLean, Miner. Eng. 36 (2012) 2.
19 J. Deng, S. Wen, Q. Yin, D. Wu, Q. Sun, J. Taiwan Inst. Chem. Eng. 71 (2017) 20.   DOI
20 A.M. Marabini, M. Ciriachi, P. Plescia, M. Barbaro, Miner. Eng. 20 (2007) 1014.   DOI
21 G. Liu, H. Zeng, Q. Lu, H. Zhong, P. Choi, Z. Xu, Colloids Surf A: Physicochem. Eng. Asp. 409 (2012) 1.   DOI
22 P. Nowak, M. Barbaro, A.M. Marabini, Int. J. Miner. Process. 32 (1991) 23.   DOI
23 A.M. Marabini, G. Bornengo, V. Alesse, F. Bergamini, 2-Mercapto-benzoxazole derivatives as collectors for the selective flotation of metal ores, U.S. Patent 5505310 (1996).
24 S. Mor, S. Nagoria, Synth. Commun. 46 (2016) 169.   DOI
25 G.S. Maier, B. Dobias, Miner. Eng. 10 (1997) 1375.   DOI
26 M. Barbaro, R. Herrera-Urbina, C. Cozza, D. Fuerstenau, A. Marabini, Int. J. Miner. Process. 50 (1997) 275.   DOI
27 T.G. Deligeorgiev, S.S. Kaloyanova, N.Y. Lesev, J.J. Vaquero, Monatsh. Chem. 142 (2011) 895.   DOI
28 C. Marion, A. Jordens, R.H. Li, M. Rudolph, K.E. Waters, Sep. Purif. Technol. 183 (2017) 258.   DOI
29 K.C. Corin, M. Kalichini, C.T. O'Connor, S. Simukanga, Miner. Eng. 102 (2017) 15.   DOI
30 K. Lee, D. Archibald, J. McLean, M.A. Reuter, Miner. Eng. 22 (2009) 395.   DOI
31 G. Liu, J. Liu, Y. Huang, X. Yang, H. Zhong, Miner. Eng. 118 (2018) 78.   DOI
32 M.C. Fuerstenau, G.J. Jameson, R.H. Yoon, Froth Flotation: A Century of Innovation, Society for Mining, Metallurgy, and Exploration, Littleton, CO, 2007.
33 D.R. Nagaraj, R.S. Farinato, Miner. Eng. 96 (2016) 2.
34 G. Liu, X. Yang, H. Zhong, Adv. Colloid Interface Sci. 246 (2017) 181.   DOI
35 M. Kalichini, K.C. Corin, C.T. O'Connor, S. Simukanga, J. S. Afr. Inst. Min. Metall. 117 (2017) 803.   DOI
36 J.S. Lee, D.R. Nagaraj, J.E. Coe, Miner. Eng. 11 (1998) 929.   DOI
37 K. Park, S. Park, J. Choi, G. Kim, M. Tong, H. Kim, Sep. Purif. Technol. 168 (2016) 1.   DOI
38 L.M. Shengo, S. Gaydardzhiev, N.M. Kalenga, Miner. Eng. 65 (2014) 145.   DOI
39 Q. Feng, W. Zhao, S. Wen, Q. Cao, J. Ind. Eng. Chem. 48 (2017) 125.   DOI
40 Q. Feng, W. Zhao, S. Wen, Appl. Surf. Sci. 436 (2018) 823.   DOI
41 Q. Feng, W. Zhao, S. Wen, J. Alloys Compd. 744 (2018) 301.   DOI
42 B. Geboes, K. Baert, A. Hubin, T. Breugelmans, Electrochim. Acta 156 (2015) 308.   DOI
43 G. Liu, Y. Huang, X. Qu, J. Xiao, X. Yang, Z. Xu, Colloids Surf A: Physicochem. Eng. Asp. 503 (2016) 34.   DOI
44 F. Li, H. Zhong, H. Xu, H. Jia, G. Liu, Miner. Eng. 71 (2015) 188.   DOI
45 X. Qu, J. Xiao, G. Liu, S. Liu, Z. Zhang, Miner. Eng. 89 (2016) 10.   DOI
46 G. Liu, J. Xiao, J. Liu, X. Qu, Q. Liu, H. Zeng, X. Yang, L. Xie, H. Zhong, Q. Liu, Z. Xu, Colloids Surf A: Physicochem. Eng. Asp. 511 (2016) 285.   DOI
47 M.H. Mashhadizadeh, K. Eskandari, A. Foroumadi, A. Shafiee, Talanta 76 (2008) 497.   DOI
48 P. Bharati, A. Bharti, M.K. Bharty, S. Kashyap, U.P. Singh, N.K. Singh, Polyhedron 63 (2013) 222.   DOI
49 P. Bharati, A. Bharti, P. Nath, S. Kumari, N.K. Singh, M.K. Bharty, Inorg. Chim. Acta 443 (2016) 160.   DOI
50 O.L. Blajiev, T. Breugelmans, R. Pintelon, H. Terryn, A. Hubin, Electrochim. Acta 53 (2008) 7451.   DOI
51 F. Matsumoto, M. Ozaki, Y. Inatomi, S.C. Paulson, N. Oyama, Langmuir 15 (1999) 857.   DOI
52 S. Varvara, R. Bostan, L. Gaina,  L.M. Muresan, Mater. Corros. 65 (2014) 1202.   DOI
53 A. Saha, R. Kumar, R. Kumar, C. Devakumar, J. Heterocycl. Chem. 47 (2010) 838.   DOI
54 P. Li, L. Shi, M. Gao, X. Yang, W. Xue, L. Jin, D. Hu, B. Song, Bioorg. Med. Chem. Lett. 25 (2015) 481.   DOI
55 J. Tian, L. Xu, W. Deng, H. Jiang, Z. Gao, Y. Hu, Chem. Eng. Sci. 164 (2017) 99.   DOI
56 F. Hipler, R.A. Fischer, J. Muller, J. Chem. Soc. Perkin Trans. 2 9 (2002) 1620.
57 N.U. Guzeldemirci, O. Kucukbasmaci, Eur. J. Med. Chem. 45 (2010) 63.   DOI
58 W. Chen, S. Hong, H. Li, H. Luo, M. Li, N. Li, Corros. Sci. 61 (2012) 53.   DOI