Browse > Article
http://dx.doi.org/10.1016/j.jiec.2018.06.033

Synthesis of (R,R)-2,3-butanediol from starch in a hybrid cell-free reaction system  

Yi, Tong (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Lim, Hye Jin (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Lee, So Jeong (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Lee, Kyung-Ho (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Kim, Dong-Myung (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Publication Information
Journal of Industrial and Engineering Chemistry / v.67, no., 2018 , pp. 231-235 More about this Journal
Abstract
In this study, we demonstrate the conversion of starch to (R,R)-2,3-butanediol (2,3-BD) in a hybrid cell-free synthesis system containing a mixture of lysates derived from Escherichia coli (E. coli) and cyanobacteria. A sufficient pool of pyruvate required for the synthesis of 2,3-BD was generated by combining metabolic pathways of cyanobacteria and E. coli. Successful synthesis of 2,3-BD was achieved by additional modifications of the hybrid cell-free system with the enzymes required to convert pyruvate to 2,3-BD. The results demonstrate a new approach to harness biological pathways to expand the scope of cell-free metabolic engineering by cross-species combinations of cell lysates.
Keywords
Cell-free metabolic engineering; Cyanobacteria; Starch; Hybrid system; 2,3-Butanediol;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Dauvillee, I.S. Kinderf, Z. Li, B. Kosar-Hashemi, M. Morell, J. Bacteriol. 187 (2005) 1465.   DOI
2 G.M. Seibold, B.J. Eikmanns, Microbiology 153 (2007) 2212.   DOI
3 E. Suzuki, K. Umeda, S. Nihei, K. Moriya, H. Ohkawa, S. Fujiwara, M. Tsuzuki, Y. Nakamura, Biochim. Biophys. Acta 1770 (2007) 763.   DOI
4 S.K. Garg, A. Jain, Bioresour. Technol. 51 (1995) 103.   DOI
5 D.R. Nielsen, S.H. Yoon, C.J. Yuan, K.L. Prather, J. Biotechnol. 5 (2010) 274.   DOI
6 L. Strydom, J. Jewell, M.A. Meier, G.M. George, B. Pfister, S. Zeeman, J. Kossmann, J.R. Lloyd, FEMS Microbiol. Lett. 364 (2017)fnx016.
7 J.L. Lee, S. Lama, J.R. Kim, S.H. Park, Biotechnol. Bioprocess Eng. 23 (2018) 250.   DOI
8 V.G. Yadav, M. De Mey, C.G. Lim, P.K. Ajikumar, Metab. Eng. 14 (2012) 233.   DOI
9 T. Willke, K.D. Vorlop, Appl. Microbiol. Biotechnol. 66 (2004) 131.   DOI
10 C. Wang, B.F. Pfleger, S.W. Kim, Curr. Opin. Biotechnol. 45 (2017) 92.
11 J. Mampel, J.M. Buescher, G. Meurer, J. Eck, Trends Biotechnol. 31 (2013) 52.   DOI
12 S. Cardinale, F.G. Tueros, M.O.A. Sommer, Cell Rep. 20 (2017) 1029.   DOI
13 J.E. Kay, M.C. Jewett, Metab. Eng. 32 (2015) 133.   DOI
14 Q.M. Dudley, A.S. Karim, M.C. Jewett, J. Biotechnol, 10 (2015) 69.   DOI
15 Y.J. Park, K.H. Lee, M.S. Baek, D.M. Kim, Biotechnol. Bioprocess Eng. 22 (2017) 497.   DOI
16 H.C. Kim, T.W. Kim, D.M. Kim, Proc. Biochem. 46 (2011) 1366.   DOI
17 J. Preiss, T. Romeo, Prog. Nucleic Acid Res. 47 (1994) 299.