Browse > Article
http://dx.doi.org/10.1016/j.jiec.2016.01.034

Preparation and electrochemical analysis of graphene nanosheets/nickel hydroxide composite electrodes containing carbon nanotubes  

Kim, Jieun (Department of Chemical and Biochemical Engineering, Pusan National University)
Kim, Yuna (Department of Chemical and Biochemical Engineering, Pusan National University)
Park, Soo-Jin (Department of Chemistry, Inha University)
Jung, Yongju (Department of Applied Chemical Engineering, Korea University of Technology and Education)
Kim, Seok (Department of Chemical and Biochemical Engineering, Pusan National University)
Publication Information
Journal of Industrial and Engineering Chemistry / v.36, no., 2016 , pp. 139-146 More about this Journal
Abstract
A set of graphene nanosheets (GNS)/nickel hydroxide ($Ni(OH)_2$) composites were successfully synthesized by adding single-walled carbon nanotubes (SWCNT) to the composites with various weight contents. The mixed composites were prepared by ultrasonication and chemical precipitation. It is postulated that the SWCNT act as additives in the composites, preventing the aggregation of the graphene sheets. The structural characterization indicated that the $Ni(OH)_2$ nanoparticles were deposited on the surface of GNS, and the SWCNT were dispersed between or onto the graphene sheets. The electrochemical performance of the composites was investigated by changing the contents of the added SWCNT. The prepared $GNS/SWCNT/Ni(OH)_2$ composites exhibited the superior electrochemical performance, indicated by the large specific capacitance over $1000Fg^{-1}$ and excellent cycle performance over 2000 cycles. Among the prepared composites, the $GNS/Ni(OH)_2$ composite containing 20 wt.% SWCNT displayed the maximum specific capacitance with a value of $1149Fg^{-1}$ at a in 6 M KOH electrolyte. Moreover, 92% of the initial specific capacitance of the composite was maintained after 2000-cycle test. Based on these results, the composite is thought to be suitable candidate for supercapacitor electrode materials.
Keywords
Graphene nanosheets; Nickel hydroxide; Single-walled carbon nanotubes; Composite electrodes; Supercapacitor;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 J.Y. Park, S.J. Park, S. Kim, J. Electrochem. Soc. 161 (5) (2014) F641.   DOI
2 J. Yan, W. Sun, T. Wei, Q. Zhang, Z. Fan, F. Wei, J. Mater. Chem. 22 (2012) 11494.   DOI
3 J. Yan, T. Wei, B. Shao, F.Q. Ma, Z.J. Fan, M.L. Zhang, C. Zhang, Y.C. Shang, W.Z. Qian, F. Wei, Carbon 48 (2010) 1731.   DOI
4 J.E. Kim, S. Kim, Electrochim. Acta 119 (2014) 11.   DOI
5 Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.C. Qin, Phys. Chem. Chem. Phys. 13 (2011) 17615.   DOI
6 Y. Wu, T. Zhang, F. Zhang, Y. Wang, Y. Ma, Y. Huang, Y. Liu, Y. Chen, Nano Energy 1 (2012) 820.   DOI
7 J.R. Choi, Y.S. Lee, S.J. Park, J. Ind. Eng. Chem. 20 (5) (2014) 3421.   DOI
8 Y.J. Yim, S.J. Park, J. Ind. Eng. Chem. 21 (1) (2015) 155.   DOI
9 P.M. Ajayan, O.Z. Zhou, Appl. Phys. 80 (2001) 391.
10 W.H. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80 (1958) 1339.   DOI
11 Y. Liang, D. Wu, X. Feng, K. Mullen, Adv. Mater. 21 (2009) 1679.   DOI
12 C.Z. Yuan, B. Gao, X.G. Zhang, J. Power Sources 173 (2007) 606.   DOI
13 J.W. Lee, T. Ann, D. Soundararajan, J.M. Ko, J.D. Kim, Chem. Commun. 47 (2011) 6305.   DOI
14 T. Battumur, S.B. Ambade, R.B. Ambade, P. Pokharel, D.S. Lee, S. Han, W. Lee, S. Lee, Curr. Appl. Phys. 13 (2013) 196.   DOI
15 B.J. Li, H.Q. Cao, J. Shao, H. Zheng, Y.X. Lu, J.F. Yin, M.Z. Qu, Chem. Commun. 47 (2011) 3159.   DOI
16 X. Chen, X. Chen, F. Zhang, Z. Yang, S. Huang, J. Power Sources 243 (2013) 555.   DOI
17 S.K. Park, Y. Shao, H. Wan, P.C. Rieke, V.V. Viswanathan, S.A. Towne, J. Liu, Y. Wang, Electrochem. Commun. 13 (2011) 258.   DOI
18 F. Du, D. Yu, L. Dai, S. Ganguli, V. Varshney, A.K. Roy, Chem. Mater. 23 (2011) 4810.   DOI
19 F. Zeng, Y. Kuang, N. Zhang, Z. Huang, Y. Pan, Z. Hou, H. Zhou, C. Yan, O.G. Schmidt, J. Power Sources 247 (2014) 396.   DOI
20 Y. Kim, S. Kim, Electrochim. Acta 163 (2015) 252.   DOI
21 J.E. Kim, S. Kim, Appl. Surf. Sci. 295 (2014) 31.   DOI
22 M.G. Kim, S. Kim, J. Ind. Eng. Chem. 20 (6) (2014) 4447.   DOI
23 P. Simon, Y. Gogotsi, Nat. Mater. 7 (2008) 845.   DOI
24 J.R. Miller, P. Simon, Science 321 (2008) 651.   DOI
25 L.H. Bao, J.F. Zang, X.D. Li, Nano Lett. 11 (2011) 1215.   DOI
26 T.N. Ramesh, R.S. Jayashree, P.V. Kamath, S. Rodrigues, A.K. Shukla, J. Power Sources 104 (2002) 295.   DOI
27 G.P. Wang, L. Zhang, J.J. Zhang, Chem. Soc. Rev. 41 (2012) 797.   DOI
28 M.S. Oh, S. Kim, Electrochim. Acta 78 (2012) 279.   DOI
29 M.S. Oh, S.J. Park, Y. Jung, S. Kim, Synth. Met. 162 (7) (2012) 695.   DOI
30 D.D. Zhao, W.J. Zhou, H.L. Li, Chem. Mater. 19 (2007) 3882.   DOI
31 H. Wang, Y. Liang, T. Mirfakhrai, Z. Chen, H.S. Casalongue, H. Dai, Nano Res. 4 (2011) 729.   DOI
32 S.M. Bak, K.H. Kim, C.W. Lee, K.B. Kim, J. Mater. Chem. 21 (2011) 1984.   DOI
33 H. Wang, H.S. Casalongue, Y. Liang, H. Dai, J. Am. Chem. Soc. 132 (2010) 7472.   DOI
34 J.H. Zhong, A.L. Wang, G.R. Li, J.W. Wang, Y.N. Ou, Y.X. Tong, J. Mater. Chem. 22 (2012) 5656.   DOI
35 C.G. Liu, Y.S. Lee, Y.J. Kim, I.C. Song, J.H. Kim, Synth. Met. 159 (2009) 2009.   DOI
36 X. Jiang, Y. Ma, J. Li, W. Huang, J. Phys. Chem. 114 (2010) 22462.
37 H.M. Jeong, J.W. Lee, W.H. Shin, Y.H. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nano Lett. 11 (2011) 2472.   DOI
38 S. Park, R.S. Ruoff, Nat. Nanotechnol. 4 (2009) 217.   DOI
39 Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Adv. Mater. 22 (2010) 3906.   DOI
40 Y. Huang, J.J. Liang, Y.S. Chen, Small 8 (2012) 1805.   DOI