Browse > Article
http://dx.doi.org/10.1016/j.jiec.2016.01.012

Pore size distribution control of pitch-based activated carbon for improvement of electrochemical property  

Cho, Eun-sam (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT))
Bai, Byong Chol (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT))
Im, Ji Sun (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT))
Lee, Chul Wee (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT))
Kim, Seok (Department of Chemical and Biomolecular Engineering, Pusan National University)
Publication Information
Journal of Industrial and Engineering Chemistry / v.35, no., 2016 , pp. 341-346 More about this Journal
Abstract
Activated carbon has been prepared using coal tar pitch as a precursor with a simple NaOH activation process. The effect of the activation on the porosity and the specific surface area is characterized by nitrogen adsorption-desorption isotherms. The highest specific surface area of $1409.7m^2g^{-1}$ is obtained with a NaOH to pitch ratio of 6. Its specific capacitance is $287.43F\;g^{-1}$ at the scan rate $50mV\;s^{-1}$, $197.78F\;g^{-1}$ at the current density $1A\;g^{-1}$, and it has outstanding energy density of $16.34Wh\;kg^{-1}$. Thus, pitch-based AC is a promising material for various energy storage devices.
Keywords
Coal tar pitch; Activated carbon; Electrochemical analysis; Capacitor; Electrode;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Fitzer, K.H. Kochling, H. Marsh, Pure Appl. Chem. 67 (1995) 473-506.   DOI
2 H. Marsh, E.A. Heintz, F. Rodriguez-Reinoso, Introduction to Carbon Technologies, Universidad de Alicante, Alicante, Spain, 1997.
3 V.G. Rocha, M. Granda, R. Santamaria, C. Blanco, E.I. Diestre, R. Menendez, J. Anal. Appl. Pyrolysis 73 (2005) 276-283.   DOI
4 V. Slovak, P. Susak, J. Anal. Appl. Pyrolysis 72 (2000) 249-252.
5 S. Mitani, S. Lee, S. Yoon, Y. Korai, I. Mochida, J. Power Sources 133 (2004) 298-301.   DOI
6 G. Grazyna, M. Jacek, L. Ewa, L. Grzegorz, F. Elzbieta, Electrochim. Acta 50 (2005) 1197-1206.   DOI
7 T. Weng, H. Teng, J. Electrochem. Soc. 148 (2001) A368-A373.   DOI
8 D. Lozano-Castello, D. Cazorla-Amoros, A. Linares-Solano, S. Shi-raishi, H. Kurihara, A. Oya, Carbon 41 (2003) 1765-1775.   DOI
9 H. Shi, Electrochim. Acta 41 (1996) 1633-1639.   DOI
10 D. Qu, H. Shi, J. Power Sources 74 (1998) 99-107.   DOI
11 Y. Guo, Z. Shi, M. Chen, C. Wang, J. Power Sources 252 (2014) 235-243.   DOI
12 M. Acik, C. Mattevi, C. Gong, G. Lee, K. Cho, M. Chhowalla, Y.J. Chabal, ACS Nano 4 (2010) 5861-5868.   DOI
13 H.M. Zhu, J.H. Yan, X.G. Jiang, Y.E. Lai, K.F. Cen, J. Hazard. Mater. 153 (2008) 670-676.   DOI
14 S. Kim, K. Lee, Chem. Phys. Lett. 400 (2004) 253-257.   DOI
15 J.B. Condon, Surface Area and Porosity Determinations by Physisorption: Measurements and Theory, Elsevier, The Netherlands, 2006.
16 H.-R. Yu, S. Cho, M.-J. Jung, Y.-S. Lee, Microporous Mesoporous Mater. 172 (2013) 131-135.   DOI
17 J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Science 313 (2006) 1760-1763.   DOI
18 R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 297 (2002) 787-792.   DOI
19 E. Frackowiak, J. Braz. Chem. Soc. 17 (2006) 1074-1082.   DOI
20 E. Raymundo-Pinero, K. Kierzek, J. Machnikowski, F. Beguin, Carbon 44 (2006) 2498-2507.   DOI
21 D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.M. Cheng, Angew. Chem. 120 (2008) 379-382.   DOI
22 S. Park, S. Kim, Electrochim. Acta 89 (2013) 516-522.   DOI
23 Q. Zhang, Y. Li, Y. Feng, W. Feng, Electrochim. Acta 90 (2012) 95-100.
24 K. Chen, D. Xue, J. Nanoeng. Nanomanuf. 4 (2014) 55.
25 B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, Y. Yang, J. Power Sources 195 (2010) 2118-2124.   DOI
26 J. Yan, J. Liu, Z. Fan, T. Wei, L. Zhang, Carbon 50 (2012) 2179-2188.   DOI