Browse > Article
http://dx.doi.org/10.1016/j.jiec.2015.09.023

One-pot microwave-assisted synthesis of reduced graphene oxide/nickel cobalt double hydroxide composites and their electrochemical behavior  

Kim, Yuna (School of Chemical and Biochemical Engineering, Pusan National University)
Cho, Eun-sam (School of Chemical and Biochemical Engineering, Pusan National University)
Park, Soo-Jin (Department of Chemistry, Inha University)
Kim, Seok (School of Chemical and Biochemical Engineering, Pusan National University)
Publication Information
Journal of Industrial and Engineering Chemistry / v.33, no., 2016 , pp. 108-114 More about this Journal
Abstract
Reduced graphene oxide (RGO)/nickel cobalt (NiCo) double hydroxide composites were synthesized by one-pot microwave-assisted method in propylene carbonate. This method is efficient because the reduction of graphene oxide and the formation of hydroxide particles on the graphene sheets were simultaneously produced. We investigated an effect of microwave irradiation in organic solvent and an electrochemical influence of nickel and cobalt ratio in double hydroxide. Morphological characterization was performed by XRD, FTIR, XPS and FE-SEM. It was found that the NiCo double hydroxide particles were well decorated on the surface of RGO sheets and the reduction of graphene oxide was completed by short-term microwave irradiation. Electrochemical behavior was also measured by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge performance. The highest specific capacitance was $1622F\;g^{-1}$ obtained at (RGO)/NiCo 2:1 (weight ratio of nickel to cobalt was 2-1). Furthermore, the composites showed higher capacitance, as well as lower resistance, better rate capability and longer cycle life rather than $RGO/Ni(OH)_2$ and $RGO/Co(OH)_2$.
Keywords
Nickel hydroxide; Cobalt hydroxide; Layered double hydroxide; Graphene; microwave irradiation; Electrochemical analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Shao, F. Ning, Y. Zhao, J. Zhao, M. Wei, D.G. Evans, X. Duan, Chem. Mater. 24 (2012) 1192.   DOI
2 M. Li, S. Xu, Y. Zhu, P. Yang, L. Wang, P.K. Chu, J. Alloys Compd. 589 (2014) 364.   DOI
3 R.R. Salunkhe, K. Jang, S. Lee, H. Ahn, RSC Adv. 2 (2012) 3190.   DOI
4 J. Liang, R. Ma, N. Iyi, Y. Ebina, K. Takada, T. Sasaki, Chem. Mater. 22 (2010) 371.   DOI
5 X. Sun, G. Wang, H. Sun, F. Lu, M. Yu, J. Lian, J. Power Sources 238 (2013) 150.   DOI
6 J. Liu, X. Wang, X. Yao, J. Wang, Z. Liu, Particuology 10 (2012) 24.   DOI
7 D.P. Dubal, A.D. Jagadale, S.V. Patil, C.D. Lokhande, Mater. Res. Bull. 47 (2012) 1239.   DOI
8 L. Xie, Z. Hu, C. Lv, G. Sun, J. Wang, Y. Li, H. He, J. Wang, K. Li, Electrohim. Acta 78 (2012) 205.   DOI
9 J. Pu, Y. Tong, S. Wang, E. Sheng, Z. Wang, J. Power Sources 250 (2014) 250.   DOI
10 V. Gupta, T. Kawaguchi, N. Miura, Mater. Res. Bull. 44 (2009) 202.   DOI
11 V. Murugan, T. Muraliganth, A. Manthiram, Chem. Mater. 21 (2009) 5004.   DOI
12 V. Gupta, S. Gupta, N. Miura, J. Power Sources 189 (2009) 1292.   DOI
13 M. Oh, S. Kim, Electrochim. Acta 59 (2012) 196.   DOI
14 J. Kim, S. Kim, Electrochim. Acta 119 (2014) 11.   DOI
15 Y. Zhang, B. Cui, C. Zhao, H. Lin, J. Li, Phys. Chem. Chem. Phys. 15 (2013) 7363.   DOI
16 B.P. Bastakoti, Y. Kamachi, H. Huang, L. Chen, K.C. Wu, Y. Yamauchi, Eur. J. Inorg. Chem. (2013) 39.
17 S.G. Kandalkar, H. Lee, S.H. Seo, K. Lee, C. Kim, J. Mater. Sci. 46 (2011) 2977.   DOI
18 H. Chen, L. Hu, M. Chen, Y. Yan, L. Wu, Adv. Funct. Mater. 24 (2014) 934.   DOI
19 W. Yang, Z. Gao, J. Wang, J. Ma, M. Zhang, L. Liu, ACS Appl. Mater. Sci. 5 (2013) 5443.   DOI
20 G. Yu, X. Xie, L. Pan, Z. Bao, Y. Cui, Nano Energy 2 (2013) 213.   DOI
21 P. Simon, Y. Gogotsi, Nat. Mater. 7 (2008) 845.   DOI
22 C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Nano Lett. 10 (2010) 4863.   DOI
23 Y. Huang, J. Liang, Y. Chen, Small 8 (2012) 1805.   DOI
24 S. Park, S. Kim, Electrochim. Acta 89 (2013) 516.   DOI
25 J. Kim, S. Kim, Appl. Surf. Sci. 295 (2014) 31.   DOI
26 J.J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B.G. Sumpter, A. Srivastava, M. Conway, A.L. Mohana Reddy, J. Yu, R. Vajtai, Nano Lett. 11 (2011) 1423.   DOI
27 Y. Si, E.T. Samulski, Chem. Mater. 20 (2008) 6792.   DOI
28 J.Y. Park, S. Kim, Int. J. Hydrogen Energy 38 (2013) 6275.   DOI
29 D. Kim, S.J. Yang, Y.S. Kim, H. Jung, C.R. Park, Carbon 50 (2012) 3229.   DOI
30 S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45 (2007) 1558.   DOI
31 D. Sun, X. Yan, J. Lang, Q. Xue, J. Power Sources 222 (2013) 52.   DOI
32 Y. Zhu, S. Murali, M.D. Stoller, A. Velamakanni, R.D. Piner, R.S. Ruoff, Carbon 48 (2010) 2106.   DOI
33 V. Murugan, T. Muraliganth, A. Manthiram, Chem. Mater. 21 (2009) 5004.   DOI
34 M.A. Surati, S. Jauhari, K.R. Desai, Arch. Appl. Sci. Res. 4 (2012) 645.
35 L. Su, X. Zhang, C. Yuan, B. Gao, J. Electrochem. Soc. 155 (2008) A110.   DOI
36 J. Wang, Y. Song, Z. Li, Q. Liu, J. Zhou, X. Jing, M. Zhang, Z. Jiang, Energy Fuels 24 (2010) 6463.   DOI
37 M. Li, J.P. Cheng, J.H. Fang, Y. Yang, F. Liu, X.B. Zhang, Electrochim. Acta 134 (2014) 309.   DOI
38 H. Hsu, K. Chang, R.R. Salunkhe, C. Hsu, C. Hu, Electrochim. Acta 94 (2013) 104.   DOI
39 Y. Tao, L. Ruiyi, L. Zaijun, Mater. Res. Bull. 51 (2014) 97.   DOI
40 T. Liu, S. Xu, L. Wang, J. Chu, Q. Wang, X. Zhu, N. Bing, P.K. Chu, J. Mater. Chem. 21 (2011) 19093.   DOI
41 H. Kim, H. Lim, S. Kim, J. Hong, D. Seo, D. Kim, S. Jeon, S. Park, K. Kang, Sci. Rep. 3 (2013) 1506.   DOI