Browse > Article
http://dx.doi.org/10.1016/j.jiec.2014.12.024

Catalytic efficiency of sulfuric and hydrochloric acids for the hydrolysis of Gelidium latifolium (Gelidiales, Rhodophyta) in bioethanol production  

Meinita, Maria Dyah Nur (Faculty of Fisheries and Marine Sciences, Jenderal Soedirman University)
Marhaeni, Bintang (Faculty of Fisheries and Marine Sciences, Jenderal Soedirman University)
Winanto, Tjahjo (Faculty of Fisheries and Marine Sciences, Jenderal Soedirman University)
Setyaningsih, Dwi (Surfactant and Bioenergy Research Center, Bogor Agricuktural University)
Hong, Yong-Ki (Department of Biotechnology, Pukyong National University)
Publication Information
Journal of Industrial and Engineering Chemistry / v.27, no., 2015 , pp. 108-114 More about this Journal
Abstract
Gelidium latifolium was selected as a potential resource for bioethanol production among 25 tropical red seaweed species candidates due to its high carbohydrate content. This report shows a catalytic efficiency comparison between sulfuric ($H_2SO_4$) and hydrochloric acid (HCl) as feasible catalysts, which are used for the hydrolysis of G. latifolium. $H_2SO_4$ showed better hydrolysis compared to HCl based on sugar production, catalytic efficiency, and ethanol production. These results are important for future applications of bioethanol production on an industrial scale.
Keywords
Seaweed; Hydrolysis; Bioethanol; Catalytic; Efficiency;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M.D.N. Meinita, J.Y. Kang, G.T. Jeong, H.M. Koo, S.M. Park, Y.K. Hong, J. Appl. Phycol. 24 (2012) 857.   DOI
2 Y. Khambaty, K. Mody, M.R. Gandhi, S. Thampy, P. Maiti, H. Brahmbhatt, K. Eswaran, P.K. Ghosh, Bioresour. Technol. 103 (2012) 180.   DOI
3 D. McHugh, Fisheries Technical Paper, FAO, Rome, 2003.
4 W.L. Zemke-White, M. Ohno, J. Appl. Phycol. 11 (1999) 369.   DOI
5 N. Qureshi, G.J. Manderson, Energy Sources 17 (1995) 241.   DOI
6 K. Karimi, S. Kheradmandinia, M.J. Taherzadeh, Biomass Bioenergy 30 (2006) 247.   DOI
7 Q. Xiang, Y.Y. Lee, R.W. Torget, in: Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals, 2004, p. 1127.
8 J. Iranmahboob, F. Nadim, Biomass Bioenergy 22 (2002) 401.   DOI
9 A. Esteghlalian, A.G. Hashimoto, J.J. Fenske, M.H. Penner, Bioresour. Technol. 59 (1997) 129.   DOI
10 M.D.N. Meinita, G.T. Jeong, Y.K. Hong, Bioprocess. Biosyst. Eng. 35 (2012) 123.   DOI
11 M.D.N. Meinita, G.T. Jeong, Y.K. Hong, Bioprocess. Biosyst. Eng. 35 (2012) 93.   DOI
12 C.J. Dawes, Marine Botany, second ed., Wiley & Son, New York, NY, 1998.
13 S.C. Prescott, C.G. Dun, Industrial Microbiology, McGraw-Hill, New York, NY, 1959.
14 G. Kochert, in: J.A. Hellebust, J.S. Craigie (Eds.), Handbook of Phycological Methods, Vol II, Physiological and Biochemical Methods, Cambridge University Press, Cambridge, 1978.
15 M.F. Chaplin, in: M.F. Chaplin, J.F. Kennedy (Eds.), Carbohydrate Analysis: A Practical Approach, IRC Press, Oxford, 1986.
16 A. Herrera, S.J. Tellez-Luis, J.J. Gonzalez-Cabriales, J.A. Ramirez, M. Vazquez, J. Food Eng. 63 (2004) 103.   DOI
17 D.J. McHugh, Production and utilization of products from commercial seaweeds, in: Fisheries Technical Paper, FAO, Rome, 1987.
18 E. Marinho-Soriano, E. Bourret, Bioresour. Technol. 90 (2003) 329.   DOI
19 C.N. Jol, T.G. Neiss, B. Penninkhof, B. Rudolph, G.A.D. Ruiter, Anal Biochem. 268 (1999) 213.   DOI
20 E. Percival, Br. Phycol. J. 14 (1979) 103.   DOI
21 R. Quemcncr, N.F. Lahaye, J. Appl. Phycol. 10 (1998) 5.
22 M.D.N. Meinita, B. Marhaeni, T. Winanto, G.T. Jeong, M.N.A. Khan, Y.K. Hong, J. Appl. Phycol. (2013), http://dx.doi.org/10.1007/s10811-013-0041-4.   DOI
23 S.J. Tellez-Luis, J.A. Ramirez, M.J. Vazquez, Sci. Food. Agric. 82 (2002) 505.   DOI
24 R. Aguilar, J.A. Ramirez, G. Garrote, M. Vazquez, J. Food Eng. 55 (2002) 309.   DOI
25 G. Bustos, J.A. Ramfrez, G. Garrote, M. Vazquez, Appl. Biochem. Biotechnol. 104 (2002) 51.
26 G.T. Jeong, D.H. Park, Appl. Biochem. Biotechnol. 161 (2010) 41.   DOI