Browse > Article
http://dx.doi.org/10.1016/j.jiec.2014.08.025

Effects of pore structure and PEI impregnation on carbon dioxide adsorption by ZSM-5 zeolites  

Lee, Chang Hun (Department of Chemical and Biological Engineering, Korea University)
Hyeon, Dong Hun (Department of Chemical and Biological Engineering, Korea University)
Jung, Hyunchul (Department of Chemical and Biological Engineering, Korea University)
Chung, Wonkeun (Department of Chemical and Biological Engineering, Korea University)
Jo, Dong Hyun (Department of Chemical and Biological Engineering, Korea University)
Shin, Dong Kun (Department of Chemical and Biological Engineering, Korea University)
Kim, Sung Hyun (Department of Chemical and Biological Engineering, Korea University)
Publication Information
Journal of Industrial and Engineering Chemistry / v.23, no., 2015 , pp. 251-256 More about this Journal
Abstract
The ZSM-5-type zeolites were prepared using three types of structure directing agent to investigate the effect of pore structure and PEI impregnation on the $CO_2$ adsorption capacity. The $CO_2$ capacity was primarily affected by the number of the adsorption site and the volume for trapping $CO_2$. $CO_2$ was well adsorbed inside the micropore with stronger electric field. The $CO_2$ capacity increased with increasing amounts of impregnated PEI until PEI loading exceeded the total pore volume, because PEI predominantly occupied the pores of ZSM-5. The ZSM-5 with large surface area and total pore volume was the most favorable for amine-impregnated ZSM-5.
Keywords
ZSM-5 zeolite; Structure directing agent (SDA); $CO_2$ adsorption; Polyethylenimine (PEI);
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 L.S. Tan, A.M. Shariff, K.K. Lau, M.A. Bustam, J. Ind. Eng. Chem. 18 (6) (2012) 1874.   DOI
2 Y.E. Kim, J.H. Park, S.H. Yun, S.C. Nam, S.K. Jeong, Y.I. Yoon, J. Ind. Eng. Chem. 20 (4) (2014) 1486.   DOI
3 P.N. Sutar, A. Jha, P.D. Vaidya, E.Y. Kenig, Chem. Eng. J. 207-208 (2012) 718.   DOI
4 M.J. Tuinier, M.V.S. Annaland, G.J. Kramer, J.A.M. Kuipers, Chem. Eng. Sci. 65 (2010) 114.   DOI
5 W.N.W. Salleh, A.F. Ismail, T. Matsuura, M.S. Abdullah, Sep. Purif. Rev. 40 (2011) 261.   DOI
6 S. Choi, J.H. Drese, C.W. Jones, ChemSusChem 2 (2009) 796.   DOI
7 Y.E. Kim, J.A. Lim, S.K. Jeong, Y.I. Yoon, S.T. Bae, S.C. Nam, Bull. Korean Chem. Soc. 34 (3) (2013) 783.   DOI
8 S.A. Freeman, R. Dugas, D.H.V. Wagener, T. Nguyen, G.T. Rochelle, Int. J. Greenhouse Gas Control 4 (2) (2010) 119.   DOI
9 A. Veawab, P. Tontiwachwuthikul, A. Chakma, Ind. Eng. Chem. Res. 38 (10) (1999) 3917.   DOI
10 P. Hemalatha, M. Bhagiyalakshmi, M. Ganesh, M. Palanichamy, V. Murugesan, H.T. Jang, J. Ind. Eng. Chem. 18 (1) (2012) 260.   DOI
11 J.-R. Li, R.J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 38 (2009) 1477.   DOI
12 M.R. Mello, D. Phanon, G.Q. Silveira, P.L. Llewellyn, C.M. Ronconi, Microporous Mesoporous Mater. 143 (1) (2011) 174.   DOI
13 A. Houshmand, W.M.A.W. Daud, M.-G. Lee, M.S. Shafeeyan, Water Air Soil Pollut. 223 (2012) 827.   DOI
14 E. Diaz, E. Munoz, A. Vega, S. Ordonez, Ind. Eng. Chem. Res. 47 (2008) 412.   DOI
15 J. Merel, M. Clausse, F. Meunier, Ind. Eng. Chem. Res. 47 (2008) 209.   DOI
16 P. Xiao, J. Zhang, P. Webley, G. Li, R. Singh, R. Todd, Adsorption 14 (2008) 575.   DOI
17 S.K. Wirawan, D. Creaser, Microporous Mesoporous Mater. 91 (2006) 196.   DOI
18 K.S. Triantafyllidis, L.A. Nalbandian, P.N. Trikalitis, A.K. Ladavos, T. Mavromoustakos, C.P. Nicolaides, Microporous Mesoporous Mater. 75 (2004) 89.   DOI
19 B.I. Shikunov, L.I. Lafer, V.I. Yakerson, I.V. Mishin, A.M. Rubinshtein, B. Acad. Sci. USSR Ch+ 21 (1972) 201.   DOI
20 L.-H. Xie, M.P. Suh, Chem. Eur. J. 19 (2013) 11590.   DOI