Browse > Article
http://dx.doi.org/10.1016/j.jiec.2013.01.010

Studies on structural, morphological, electrical and electrochemical properties of activated carbon prepared from sugarcane bagasse  

Adinaveen, T. (Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College)
Kennedy, L. John (Materials Division, School of Advanced Sciences, Vellore Institute of Technology (VIT) University, Chennai Campus)
Vijaya, J. Judith (Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College)
Sekaran, G. (Environmental Technology Division, Central Leather Research Institute)
Publication Information
Journal of Industrial and Engineering Chemistry / v.19, no.5, 2013 , pp. 1470-1476 More about this Journal
Abstract
Activated carbon composite was prepared from sugarcane bagasse. The X-ray diffraction revealed the evolution of crystallites of carbon and silica during activation at higher temperature. FTIR spectrum shows the presence of functional groups and silica in the carbon composite. The morphology of the carbon sample was determined by SEM. The surface area, pore volume and pore size distribution of carbon composites were measured. The dc conductivity was determined and conductivity at room temperature was found to increase from $10.22{\times}10^{-3}$ to $25.131{\times}10^{-3}Scm^{-1}$. The samples show good electrochemical property and the specific capacitance in the range of 92-340 $Fg^{-1}$.
Keywords
Activated carbon; Surface morphology; X-ray diffraction; Electrical conductivity; Supercapacitors;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Bourbigot, M. Le Bras, R. Delobel, Carbon 33 (1995) 283.   DOI
2 T.H. Liou, Materials Science and Engineering A 364 (2004) 313.   DOI
3 O. Gyu Hwan, C.R. Park, Fuel 81 (2002) 327.   DOI
4 W.T. Tsai, C.Y. Chang, M.C. Lin, S.F. Chien, H.F. Sun, M.F. Hsieh, Chemosphere 45 (2001) 51.   DOI
5 M. Molina-Sabio, F. Rodriguez-Reinoso, F. Caturla, M.J. Selles, Carbon 33 (1999) 1105.
6 J. Laine, S. Yunes, Carbon 30 (1992) 601.   DOI
7 C.A. Philip, B.S. Girgis, Journal of Chemical Technology and Biotechnology 67 (1996) 248.   DOI
8 M. Jagtoyen, F. Derbyshire, Carbon 36 (1998) 1085.   DOI
9 D. Pantea, H. Darmstadt, S. Kaliaguine, L. Summchen, C. Roy, Carbon 39 (2001) 1147.   DOI
10 E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, 2nd ed., Oxford University Press, New York, 1988.
11 M. Kaus, J. Kowal, D.U. Sauer, Electrochimica Acta 55 (2010) 7516.   DOI
12 T. Wigman, Carbon 27 (1989) 13.   DOI
13 M.S. Solum, R.J. Pugmine, M. Jagyoten, F. Derbyshire, Carbon 33 (1995) 1247.   DOI
14 L.J. Kennedy, J.J. Vijaya, G. Sekaran, Industrial and Engineering Chemistry Research 43 (2004) 1832.   DOI
15 Y. Guo, D.A. Rockstraw, Carbon 44 (2006) 1464.   DOI
16 W.T. Tsai, C.Y. Chang, S.L. Lee, Carbon 35 (1997) 1198.   DOI
17 Y. Guo, D.A. Rockstraw, Microporous and Mesoporous Materials 100 (2007) 12.   DOI
18 J. Hayashi, H. Toshihide, T. Isao, M. Katsuhiko, N.A. Fard, Carbon 40 (2002) 2381.   DOI
19 W.C. Lim, C. Srinivasakannan, N. Balasubramanian, Journal of Analytical and Applied Pyrolysis 88 (2010) 181.   DOI
20 G.G. Stavropoulos, A.A. Zabaniotou, Microporous and Mesoporous Materials 82 (2005) 79.   DOI
21 H. Oda, Y. Nakagawa, Carbon 41 (2003) 1037.   DOI
22 J.A. Pessoa, I.M. de Manchilha, S. Sato, Journal of Industrial Microbiology and Biotechnology 18 (1997) 360.   DOI
23 Z. Hu, M.P. Srinivasan, N. Yaming, Carbon 39 (2001) 877.   DOI
24 A. Yuan, Q. Zhang, Electrochemistry Communications 8 (2006) 1173.   DOI
25 S. Biloe, V. Goetz, A. Guillot, Carbon 40 (2002) 1295.   DOI
26 T.E. Rufford, D.H. Jurcakova, K. Khosla, Z. Zhu, G.Q. Lu, Journal of Power Sources 195 (2010) 912.   DOI
27 C.H. Huang, R.A. Doong, Microporous and Mesoporous Materials 147 (2012) 47.   DOI
28 S.J. Gregg, K.S.W. Sing, Adsorption Surface Area and Porosity, Academic Press, London, 1982.
29 A.C. Pastor, R. Rodriguez, H. Marsh, M.A. Martinez, Carbon 37 (1999) 1275.   DOI
30 N. Yalcin, V. Sevnic, Ceramics International 27 (2001) 219.   DOI