Browse > Article

Application of Electrospun Silk Fibroin Nanofibers as an Immobilization Support of Enzyme  

Lee Ki Hoon (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University)
Ki Chang Seok (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University)
Baek Doo Hyun (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University)
Kang Gyung Don (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University)
Ihm Dae-Woo (Department of innovative Industrial Technology, Hoseo University)
Park Young Hwan (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University)
Publication Information
Fibers and Polymers / v.6, no.3, 2005 , pp. 181-185 More about this Journal
Abstract
Silk fibroin (SF) nanofibers were prepared by electrospinning and their application as an enzyme immobilization support was attempted. By varying the concentration of SF dope solution the diameter of SF nanofiber was controlled. The SF nanofiber web had high capacity of enzyme loading, which reached to $5.6\;wt\%$. The activity of immobilized a-chymotrypsin (CT) on SF nanofiber was 8 times higher than that on silk fiber and it increased as the fiber diameter decreased. Sample SF8 (ca. 205 nm fiber diameter) has excellent stability at $25^{\circ}C$ by retaining more than $90\%$ of initial activity after 24 hours, while sample SF11 (ca. 320 nm fiber diameter) shows higher stability in ethanol, retaining more than $45\%$ of initial activity. The formation of multipoint attachment between enzyme and support might increase the stability of enzyme. From these results, it is expected that the electrospun SF nanofibers can be used as an excellent support for enzyme immobilization.
Keywords
Electrospinning; Nanofiber; Silk fibroin; Enzyme immobilization;
Citations & Related Records

Times Cited By Web Of Science : 26  (Related Records In Web of Science)
Times Cited By SCOPUS : 23
연도 인용수 순위
1 J. Xie and Y. Hsieh, J. Mater. Sci., 38, 2125 (2003)   DOI   ScienceOn
2 H. Jin, J. Chen, V. Karageorgiou, G. H. Altman, and D. L. Kaplan, Biomaterials, 25, 1039 (2004)   DOI   ScienceOn
3 K. H. Lee, G. D. Kang, B. S. Shin, Y. H. Park, and J. H. Nahm, Int. J. Indust. Entomol., 8, 195 (2004)
4 K. W. Kim, K. H. Lee, M. S. Khil, Y. S. Ho, and H. Y. Kim, Fibers and Polymers, 5, 122 (2004)   DOI   ScienceOn
5 D. Li and Y. Xia, Adv. Mater., 16, 1151 (2004)   DOI   ScienceOn
6 H. Jia, G. Zhu, B. Vugrinovich, W. Kataphinan, D. H. Reneker, and P. Wang, Biotechnol. Prog., 18, 1027 (2002)   DOI   ScienceOn
7 W. Tischer and F. Wedekind, Top. Curr. Chem., 200, 95 (1999)   DOI
8 B. Min, G. Lee, S. H. Kim, Y. S. Nam, T. S. Lee, and W. H. Park, Biomaterials, 25, 1289 (2004)   DOI   ScienceOn
9 K. H. Lee, G. D. Kang, B. S. Shin, and Y. H. Park, Fibers and Polymers, 6, 1 (2005)   DOI   ScienceOn
10 K. Ohgo, C. Zhao, M. Kobayashi, and T. Asakura, Polymer, 44, 841 (2003)   DOI   ScienceOn
11 V. Mozhaev, M. Sergeeva, A. Belova, and Y. Khmelnitsky, Biotech. Bioeng., 35, 653 (1990)   DOI   ScienceOn
12 Y. Zhang, Biotech. Adv., 16, 961 (1998)   DOI   ScienceOn
13 P. W. Tardioli, J. Pedroche, R. L. C. Giordano, R. Fernandez- Lafuente, and J. M. Guisan, Biotechnol. Prog., 19, 352 (2003)   DOI   ScienceOn
14 Y. Wang and Y. Hsieh, J. Polym. Sci. Polym. Chem., 42, 4289 (2004)   DOI   ScienceOn
15 S. H. Kim, Y. S. Nam, T. S. Lee, and W. H. Park, Polym. J., 35, 185 (2003)   DOI   ScienceOn
16 S. Zarkoob, R. K. Eby, D. H. Reneker, S. D. Hudson, D. Ertley, and W. W. Adams, Polymer, 45, 3973 (2004)   DOI   ScienceOn
17 Z. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Comp. Sci. Tech., 63, 2223 (2003)   DOI   ScienceOn
18 S. Sukigara, M. Gandhi, J. Ayutsede, M. Micklus, and F. Ko, Polymer, 44, 5721 (2003)   DOI   ScienceOn