Browse > Article

Crosslinking Reaction of Phenolic Side Chains in Silk Fibroin by Tyrosinase  

Kang, Gyung-Don (School of Biological Resources and Materials Engineering, Seoul National University)
Lee, Ki-Hoon (School of Biological Resources and Materials Engineering, Seoul National University)
Ki, Chang-Seok (School of Biological Resources and Materials Engineering, Seoul National University)
Park, Young-Hwan (School of Biological Resources and Materials Engineering, Seoul National University)
Publication Information
Fibers and Polymers / v.5, no.3, 2004 , pp. 234-238 More about this Journal
Abstract
Tyrosinase oxidizes the tyrosyl residues in silk fibroin (SF) with oxygen, resulting in the production of ο-quinone residues. Subsequently, the inter-or intramolecular crosslinks are formed by reaction with amino groups in through nonenzymatic process. The measurement of oxygen consumption proved that the tyrosyl residues in SF were mostly oxidized to quinone residues by tyrosinase. The reaction mechanisms were proposed in this study and the crosslinking reaction of ο-quinone residues and the enzymatic oxidation of tyrosyl residues could be confirmed by the measurements of UV, $^1$H-NMR and GFC.
Keywords
Silk fibroin; Tyrosinase; Crosslinking reaction; UV-vis spectroscopy; $^1{H-NMR}$;
Citations & Related Records

Times Cited By Web Of Science : 9  (Related Records In Web of Science)
Times Cited By SCOPUS : 8
연도 인용수 순위
1 K. Yamada, T. Chen, G. Kumar, O. Vesnovsky, L. D. T. Topoleski, and G. F. Payne, Biomacromolecules, 1, 252 (2000)   DOI   ScienceOn
2 J. H. Nahm and B. S. Shin, 'Silk Science', p.88, Seoul National University Press, 1998
3 R. D. B. Fraser, T. P. MacRae, and F. H. C. Stewart, J. Mol. Biol, 19, 580 (1966)   DOI
4 A. Golan-Goldhirsh and J. R. Whitaker, J. Agric. Food Chem., 32, 1003 (1984)   DOI
5 V. S. Nithianandam and S. Erthan, Polymer, 39, 4095 (1998)   DOI   ScienceOn
6 W. A. Prutz, J. Butler, and E. J. Land, Int. J. Radiat. Biot.. 44,183 (1983)   DOI
7 J. A. Gerrard, S. E. Fayle, and K. H. Sutton, J. Agric. Food Chem.,47, 1183 (1999)   DOI   ScienceOn
8 A. M. Mayer and E. Harel, Phytochemistry, 18, 193 (1979)   DOI   ScienceOn
9 C. J. Pouchert and J. Behnke, 'The Aldhch Library of $^{13}C$ and 'H FT NMR Spectra', 1st ed., Vol. 1, Aldrich Chemical Company, Inc., 1993
10 J. H. Waite and M. L. Tanzer, Science, 212, 1038 (1981)
11 N. Yokochi, T. Morita, and T. Yagi, J. Agric. Food Chem.. 51, 2773 (2003)
12 G. D. Kang, J. H. Nahm, J. S. Park, J. Y. Moon, C. S. Cho, and J. H. Yeo, Macromol. Rapid Commun., 21, 788 (2000)   DOI   ScienceOn
13 H. Decker, R. Dillinger, and F. Tuczek, Angew. Chem. Int. Ed.,9, 1591 (2000)
14 H. Yamamoto, S. Kuno, A. Nagai, A. Nishida, S. Yamauchi, and K. Ikeda, Int. J. BioI. Macromol, 12, 305 (1990)   DOI   ScienceOn
15 R. L. Strausberg and R. P. Link, Trends Biotechnol, 8, 53 (1990)   DOI   ScienceOn
16 T. Chen, R. Vazquez-Duhalt, C. F. Wu, W. E. Bentley, and G. F. Payne, Biomacromolecules, 2, 456 (2001)   DOI   ScienceOn
17 M. Yu, J. Y. Hwang, and T. J. Deming, J. Am. Chem. Soc., 121, 5825 (1999)   DOI   ScienceOn
18 T. Chen, H. D. Embree, L. Q. Wu, and G. F. Payne, Biopolymers, 64, 292 (2002)   DOI   ScienceOn
19 T. Asakura, R. Sugino, J. Yao, H. Takashima, and R. Kishore, Biochemistry, 41, 4415 (2002)   DOI   ScienceOn