Browse > Article
http://dx.doi.org/10.5370/JEET.2014.9.5.1447

Real-Time Maximum Power Point Tracking Method Based on Three Points Approximation by Digital Controller for PV System  

Kim, Seung-Tak (School of Electrical and Electronic Engineering, Yonsei University)
Bang, Tae-Ho (School of Electrical and Electronic Engineering, Yonsei University)
Lee, Seong-Chan (School of Electrical and Electronic Engineering, Yonsei University)
Park, Jung-Wook (School of Electrical and Electronic Engineering, Yonsei University)
Publication Information
Journal of Electrical Engineering and Technology / v.9, no.5, 2014 , pp. 1447-1453 More about this Journal
Abstract
This paper proposes the new method based on the availability of three points measurement and convexity of photovoltaic (PV) curve characteristic at the maximum power point (MPP). In general, the MPP tracking (MPPT) function is the important part of all PV systems due to their power-voltage (P-V) characteristics related with weather conditions. Then, the analog-to-digital converter (ADC) and low pass filter (LPF) are required to measure the voltage and current for MPPT by the digital controller, which is used to implement the PV power conditioning system (PCS). The measurement and quantization error due to rounding or truncation in ADC and the delay of LPF might degrade the reliability of MPPT. To overcome this limitation, the proposed method is proposed while improving the performances in both steady-state and dynamic responses based on the detailed investigation of its properties for availability and convexity. The performances of proposed method are evaluated with the several case studies by the PSCAD/EMTDC$^{(R)}$ simulation. Then, the experimental results are given to verify its feasibility in real-time.
Keywords
Analog-to-digital converter; Low pass filter; Maximum power point tracking (MPPT); Photovoltaic (PV) power system;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Safari and S. Mekhilef, "Simulation and hardware implementation of incremental conductance MPPT with direct control method using cuk converter," IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1154- 1161, Apr. 2011.   DOI   ScienceOn
2 M. A. S. Masoum, H. Dehbonei, and E. F. Fuchs, "Theoretical and experimental analyses of photovoltaic systems with voltage and current-based maximum power-point tracking," IEEE Trans. Energy Convers., vol. 17, no. 4, pp. 514-522, Dec. 2002.   DOI   ScienceOn
3 F. Liu, S. Duan, F. Liu, B. Liu, and Y. Kang, "A variable step size INC MPPT method for PV systems," IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2622- 2628, Jul. 2008.   DOI   ScienceOn
4 S. Kjaer, "Evaluation of the "hill climbing" and the "incremental conductance" maximum power point trackers for photovoltaic power systems," IEEE Trans. Energy Convers., vol. 27, no. 4, pp. 922-929, Dec. 2012.   DOI   ScienceOn
5 W. M. Lin, C. M. Hong, and C. H. Chen, "Neuralnetwork- based MPPT control of a stand-alone hybrid power generation system," IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3571-3581, Dec. 2011   DOI   ScienceOn
6 M. Veerachary, T. Senjyu, and K. Uezato, "Neuralnetwork- based maximum-power-point tracking of coupled-inductor interleaved-boost converter-supplied PV system using fuzzy controller," IEEE Trans. Ind. Electron., vol. 50, no. 4, pp. 749-758, Aug. 2003.   DOI   ScienceOn
7 S. L. Brunton, C. W. Rowley, S. R. Kulkarni, and C. Clarkson, "Maximum power point tracking for photovoltaic optimization using ripple-based extremum seeking control," IEEE Trans. Power Electron., vol. 25, no. 10, pp. 2531-2540, Oct. 2010.   DOI   ScienceOn
8 X. L,I, Y. Li, and J. E. Seem, "Maximum power point tracking for photovoltaic system using adaptive extremum seeking control," IEEE Trans. Control Syst. Tech., vol. 21, no. 6, pp. 2315-2322, Nov. 2013   DOI   ScienceOn
9 N. Femia, G. Petrone, G. Spagnuolo and M. Vitelli, "Optimization of perturb and observe maximum power point tracking method," IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963-973, Jul. 2005   DOI   ScienceOn
10 F.-S. Pai, R.-M. Chao, S. H. Ko, and T.-S. Lee, "Performance evaluation of parabolic prediction to maximum power point tracking for PV array," IEEE Trans. Sustain. Energy, vol. 2, no. 1, pp. 60-68, Jan. 2011.
11 K. Ishaque, Z. Salam, M. Amjad, and S. Mekhilef "An improved particle swarm optimization (PSO)- based MPPT for PV with reduced steady state oscillation," IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3627-3638, Aug. 2012   DOI   ScienceOn
12 M. A. Elgendy, B. Zahawi, and D. J. Atkinson, "Assessment of perturb and observe MPPT algorithm implementation techniques for PV pumping applications," IEEE Trans. Sustain. Energy, vol. 3, no. 1, pp. 21-33, Jan. 2012.   DOI   ScienceOn
13 S. Liu and R. A. Dougal, "Dynamic multiphysics model for solar array," IEEE Trans. Energy Conv., vol. 17, no. 2, pp. 285-294, Jun. 2002.   DOI   ScienceOn
14 J. J. Soon and K. S. Low, "Photovoltaic model identification using particle swarm optimization with inverse barrier constraint," IEEE Trans. Power Electron., vol. 27, no. 9, pp. 3975-3983, Mar. 2012   DOI   ScienceOn
15 S.-T. Kim and J.-W. Park "Improvement of boost converter control using notch filter for PV system," in Proc. 2014 Int. Conf. on Electronics, Information and Communications (ICEIC), Kota Kinabalu, Malaysia Jan. 2014.