Browse > Article
http://dx.doi.org/10.5713/ajas.17.0801

Effect of inoculants and storage temperature on the microbial, chemical and mycotoxin composition of corn silage  

Wang, Musen (Department of Grassland Science, China Agricultural University)
Xu, Shengyang (Department of Grassland Science, China Agricultural University)
Wang, Tianzheng (Department of Grassland Science, China Agricultural University)
Jia, Tingting (Department of Grassland Science, China Agricultural University)
Xu, Zhenzhen (Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science)
Wang, Xue (Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science)
Yu, Zhu (Department of Grassland Science, China Agricultural University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.31, no.12, 2018 , pp. 1903-1912 More about this Journal
Abstract
Objective: To evaluate the effect of lactic acid bacteria and storage temperature on the microbial, chemical and mycotoxin composition of corn silage. Methods: Corn was harvested at 32.8% dry matter, and chopped to 1 to 2 cm. The chopped material was subjected to three treatments: i) control (distilled water); ii) $1{\times}10^6$ colony forming units (cfu)/g of Lactobacillus plantarum; iii) $1{\times}10^6cfu/g$ of Pediococcus pentosaceus. Treatments in triplicate were ensiled for 55 d at $20^{\circ}C$, $28^{\circ}C$, and $37^{\circ}C$ in 1-L polythene jars following packing to a density of approximately $800kg/m^3$ of fresh matter, respectively. At silo opening, microbial populations, fermentation characteristics, nutritive value and mycotoxins of corn silage were determined. Results: L. plantarum significantly increased yeast number, water soluble carbohydrates, nitrate and deoxynivalenol content, and significantly decreased the ammonia N value in corn silage compared with the control (p<0.05). P. pentosaceus significantly increased lactic acid bacteria and yeast number and content of deoxynivalenol, nivalenol, T-2 toxin and zearalenone, while decreasing mold population and content of nitrate and 3-acetyl-deoxynivalneol in corn silage when stored at $20^{\circ}C$ compared to the control (p<0.05). Storage temperature had a significant effect on deoxynivalenol, nivalenol, ochratoxin A, and zearalenone level in corn silage (p<0.05). Conclusion: Lactobacillus plantarum and Pediococcus pentosaceus did not decrease the contents of mycotoxins or nitrate in corn silage stored at three temperatures.
Keywords
Lactobacillus plantarum; Pediococcus pentosaceus; Corn Silage; Nutritive Value; Mycotoxin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tsiplakou E, Anagnostopoulos C, Liapis K, Haroutounian SA, Zervas G. Determination of mycotoxins in feedstuffs and ruminant's milk using an easy and simple LC-MS/MS multiresidue method. Talanta 2014;130:8-19.   DOI
2 Riley RT. Chapter 7 Mechanistic interactions of mycotoxins: theoretical considerations. Mycotoxins in agriculture and food safety. New York, USA: Marcel Dekker Inc; 1998.
3 Scott PM. Industrial and farm detoxification processes for mycotoxins. Rev Med Vet 1998;149:543-8.
4 Zhang Q, Li XJ, Zhao MM, Yu Z. Lactic acid bacteria strains for enhancing the fermentation quality and aerobic stability of Leymus chinensis silage. Grass Forage Sci 2016;71:472-81.   DOI
5 Van Soest PJ, Robertson PJ, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 1991;74:3583-97.   DOI
6 Anastassiades M, Lehotay SJ, Stajnbaher D, Schenck FJ. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce. J AOAC Int 2003;86:412-31.
7 Yogendrarajah P, Poucke CV, Meulenaer BD, Saeger SD. Development and validation of a QuEChERS based liquid chromatography tandem mass spectrometry method for the determination of multiple mycotoxins in spices. J Chromatogr A 2013;1297:1-11.   DOI
8 Filya I, Sucu E, Karabulut A. The effect of Lactobacillus buchneri on the fermentation, aerobic stability and ruminal degradability of maize silage. J Appl Microbiol 2006;101:1216-23.   DOI
9 Guerre P. Interest of the treatments of raw materials and usage of adsorbents to decontaminate animal food containing mycotoxins. Rev Med Vet 2000;151:1095-106.
10 Huwig A, Freimund S, Kappeli O, Dutler H. Mycotoxin detoxication of animal feed by different adsorbents. Toxicol Lett 2001;122:179-88.   DOI
11 Cheli F, Campagnoli A, Dell' Orto V. Fungal populations and mycotoxins in silages: From occurrence to analysis. Anim Feed Sci Technol 2013;183:1-16.   DOI
12 Kollarczik B, Gareis M, Hanelt M. In vitro transformation of the Fusarium mycotoxins deoxynivalenol and zearalenone by the normal gut microflora of pigs. Nat Toxins 1994;2:105-10.   DOI
13 Storm IDM, Sorensen JL, Rasmussen RR, Nielsen KF, Thrane U. Mycotoxins in silage. Stewart Postharvest Rev 2008;4:1-12.
14 Keller LAM, Keller KM, Monge MP, et al. Gliotoxin contamination in pre- and postfermented corn, sorghum and wet brewer's grains silage in Sao Paulo and Rio de Janeiro State, Brazil. J Appl Microbiol 2012;112:865-73.   DOI
15 Wang C, Nishino N. Effects of storage temperature and ensiling period on fermentation products, aerobic stability and microbial communities of total mixed ration silage. J Appl Microbiol 2013;114:1687-95.   DOI
16 Borreani G, Tabacco E. Bio-based biodegradable film to replace the standard polyethylene cover for silage conservation. J Dairy Sci 2015;98:386-94.   DOI
17 Kalac P, Woodford MK. A review of some aspects of possible associations between the feedings of silage and animal health. Br Vet J 1982;138:305-20.   DOI
18 Niderkorn V, Morgavi DP, Pujos E, Tissandier A, Boudra H. Screening of fermentative bacteria for their ability to bind and biotransform deoxynivalenol, zearalenone and fumonisins in an in vitro simulated corn silage model. Food Addit Contam 2007;24:406-15.   DOI
19 Niderkorn V, Boudra H, Morgavi DP. Binding of Fusarium mycotoxins by fermentative bacteria in vitro. J Appl Microbiol 2006;101:849-56.   DOI
20 Damoglou AP, Shannon W, Downey GA. The interaction between Fusarium and their mycotoxins in grass silage. J Sci Food Agric 1984;35:279-84.   DOI
21 Alonso VA, Pereyra CM, Keller LAM, et al. Fungi and mycotoxins in silage: an overview. J Appl Microbiol 2013;115:637-43.   DOI
22 Reyneri A. The role of climatic condition on mycotoxin production in cereal. Vet Res Commun 2006;30(Suppl 1):87-92.   DOI
23 Sweeney MJ, Dobson ADW. Mycotoxin production by Aspergillus, Fusarium and Penicillium species. Int J Food Microbiol 1998;43:141-58.   DOI
24 Boudra H, Morgavi DP. Reduction in Fusarium toxin levels in corn silage with low dry matter and storage time. J Agric Food Chem 2008;56:4523-8.   DOI
25 Gonzales Pereyra ML, Alonso VA, Sager R, et al. Fungi and selected mycotoxins in pre- and postfermented corn silage. J Appl Microbiol 2008;104:1034-41.   DOI
26 El-Shanawany AA, Mostafa ME, Barakat A. Fungal population and mycotoxins in silage in Assiut and Sohag governorates in Egypt, with a special reference to characteristic Aspergilli toxins. Mycopathologia 2005;159:281-9.   DOI
27 Richard E, Heutte N, Bouchart V, Garon D. Evaluation of fungal contamination and mycotoxin production in maize silage. Anim Feed Sci Technol 2009;148:309-20.   DOI
28 Reddy KRN, Salleh B, Saad B, et al. An overview of mycotoxin contamination in foods and its implications for human health. Toxin Rev 2010;29:3-26.   DOI
29 Fink-Gremmels J. Mycotoxins in forages. In: Diaz DE, editor. The mycotoxin blue book. Nottingham, UK: Nottingham University Press; 2005. pp. 249-68.