Effect of inoculants and storage temperature on the microbial, chemical and mycotoxin composition of corn silage |
Wang, Musen
(Department of Grassland Science, China Agricultural University)
Xu, Shengyang (Department of Grassland Science, China Agricultural University) Wang, Tianzheng (Department of Grassland Science, China Agricultural University) Jia, Tingting (Department of Grassland Science, China Agricultural University) Xu, Zhenzhen (Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science) Wang, Xue (Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science) Yu, Zhu (Department of Grassland Science, China Agricultural University) |
1 | Tsiplakou E, Anagnostopoulos C, Liapis K, Haroutounian SA, Zervas G. Determination of mycotoxins in feedstuffs and ruminant's milk using an easy and simple LC-MS/MS multiresidue method. Talanta 2014;130:8-19. DOI |
2 | Riley RT. Chapter 7 Mechanistic interactions of mycotoxins: theoretical considerations. Mycotoxins in agriculture and food safety. New York, USA: Marcel Dekker Inc; 1998. |
3 | Scott PM. Industrial and farm detoxification processes for mycotoxins. Rev Med Vet 1998;149:543-8. |
4 | Zhang Q, Li XJ, Zhao MM, Yu Z. Lactic acid bacteria strains for enhancing the fermentation quality and aerobic stability of Leymus chinensis silage. Grass Forage Sci 2016;71:472-81. DOI |
5 | Van Soest PJ, Robertson PJ, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 1991;74:3583-97. DOI |
6 | Anastassiades M, Lehotay SJ, Stajnbaher D, Schenck FJ. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce. J AOAC Int 2003;86:412-31. |
7 | Yogendrarajah P, Poucke CV, Meulenaer BD, Saeger SD. Development and validation of a QuEChERS based liquid chromatography tandem mass spectrometry method for the determination of multiple mycotoxins in spices. J Chromatogr A 2013;1297:1-11. DOI |
8 | Filya I, Sucu E, Karabulut A. The effect of Lactobacillus buchneri on the fermentation, aerobic stability and ruminal degradability of maize silage. J Appl Microbiol 2006;101:1216-23. DOI |
9 | Guerre P. Interest of the treatments of raw materials and usage of adsorbents to decontaminate animal food containing mycotoxins. Rev Med Vet 2000;151:1095-106. |
10 | Huwig A, Freimund S, Kappeli O, Dutler H. Mycotoxin detoxication of animal feed by different adsorbents. Toxicol Lett 2001;122:179-88. DOI |
11 | Cheli F, Campagnoli A, Dell' Orto V. Fungal populations and mycotoxins in silages: From occurrence to analysis. Anim Feed Sci Technol 2013;183:1-16. DOI |
12 | Kollarczik B, Gareis M, Hanelt M. In vitro transformation of the Fusarium mycotoxins deoxynivalenol and zearalenone by the normal gut microflora of pigs. Nat Toxins 1994;2:105-10. DOI |
13 | Storm IDM, Sorensen JL, Rasmussen RR, Nielsen KF, Thrane U. Mycotoxins in silage. Stewart Postharvest Rev 2008;4:1-12. |
14 | Keller LAM, Keller KM, Monge MP, et al. Gliotoxin contamination in pre- and postfermented corn, sorghum and wet brewer's grains silage in Sao Paulo and Rio de Janeiro State, Brazil. J Appl Microbiol 2012;112:865-73. DOI |
15 | Wang C, Nishino N. Effects of storage temperature and ensiling period on fermentation products, aerobic stability and microbial communities of total mixed ration silage. J Appl Microbiol 2013;114:1687-95. DOI |
16 | Borreani G, Tabacco E. Bio-based biodegradable film to replace the standard polyethylene cover for silage conservation. J Dairy Sci 2015;98:386-94. DOI |
17 | Kalac P, Woodford MK. A review of some aspects of possible associations between the feedings of silage and animal health. Br Vet J 1982;138:305-20. DOI |
18 | Niderkorn V, Morgavi DP, Pujos E, Tissandier A, Boudra H. Screening of fermentative bacteria for their ability to bind and biotransform deoxynivalenol, zearalenone and fumonisins in an in vitro simulated corn silage model. Food Addit Contam 2007;24:406-15. DOI |
19 | Niderkorn V, Boudra H, Morgavi DP. Binding of Fusarium mycotoxins by fermentative bacteria in vitro. J Appl Microbiol 2006;101:849-56. DOI |
20 | Damoglou AP, Shannon W, Downey GA. The interaction between Fusarium and their mycotoxins in grass silage. J Sci Food Agric 1984;35:279-84. DOI |
21 | Alonso VA, Pereyra CM, Keller LAM, et al. Fungi and mycotoxins in silage: an overview. J Appl Microbiol 2013;115:637-43. DOI |
22 | Reyneri A. The role of climatic condition on mycotoxin production in cereal. Vet Res Commun 2006;30(Suppl 1):87-92. DOI |
23 | Sweeney MJ, Dobson ADW. Mycotoxin production by Aspergillus, Fusarium and Penicillium species. Int J Food Microbiol 1998;43:141-58. DOI |
24 | Boudra H, Morgavi DP. Reduction in Fusarium toxin levels in corn silage with low dry matter and storage time. J Agric Food Chem 2008;56:4523-8. DOI |
25 | Gonzales Pereyra ML, Alonso VA, Sager R, et al. Fungi and selected mycotoxins in pre- and postfermented corn silage. J Appl Microbiol 2008;104:1034-41. DOI |
26 | El-Shanawany AA, Mostafa ME, Barakat A. Fungal population and mycotoxins in silage in Assiut and Sohag governorates in Egypt, with a special reference to characteristic Aspergilli toxins. Mycopathologia 2005;159:281-9. DOI |
27 | Richard E, Heutte N, Bouchart V, Garon D. Evaluation of fungal contamination and mycotoxin production in maize silage. Anim Feed Sci Technol 2009;148:309-20. DOI |
28 | Reddy KRN, Salleh B, Saad B, et al. An overview of mycotoxin contamination in foods and its implications for human health. Toxin Rev 2010;29:3-26. DOI |
29 | Fink-Gremmels J. Mycotoxins in forages. In: Diaz DE, editor. The mycotoxin blue book. Nottingham, UK: Nottingham University Press; 2005. pp. 249-68. |