Browse > Article
http://dx.doi.org/10.5713/ajas.15.0132

Effect of Glutamine, Glutamic Acid and Nucleotides on the Turnover of Carbon (δ13C) in Organs of Weaned Piglets  

Amorim, Alessandro Borges (Institute of Agricultural Sciences and Technologies, Federal University of Mato Grosso, Rondonopolis Campus)
Berto, Dirlei Antonio (Department of Animal Production, Faculty of Animal Science and Veterinary Medicine, Sao Paulo State University (UNESP), Botucatu Campus)
Saleh, Mayra Anton Dib (Department of Animal Production, Faculty of Animal Science and Veterinary Medicine, Sao Paulo State University (UNESP), Botucatu Campus)
Telles, Filipe Garcia (Department of Animal Production, Faculty of Animal Science and Veterinary Medicine, Sao Paulo State University (UNESP), Botucatu Campus)
Denadai, Juliana Celia (Department of Animal Production, Faculty of Animal Science and Veterinary Medicine, Sao Paulo State University (UNESP), Botucatu Campus)
Sartori, Maria Marcia Pereira (Institute of Biosciences, Sao Paulo State University (UNESP), Environmental Stable Isotopes Center)
Luiggi, Fabiana Golin (Department of Animal Production, Faculty of Animal Science and Veterinary Medicine, Sao Paulo State University (UNESP), Botucatu Campus)
Santos, Luan Sousa (Department of Animal Production, Faculty of Animal Science and Veterinary Medicine, Sao Paulo State University (UNESP), Botucatu Campus)
Ducatti, Carlos (Institute of Biosciences, Sao Paulo State University (UNESP), Environmental Stable Isotopes Center)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.29, no.8, 2016 , pp. 1152-1158 More about this Journal
Abstract
Morphological and physiological alterations occur in the digestive system of weanling piglets, compromising the performance in subsequent phases. This experiment aimed at verifying the influence of glutamine, glutamate and nucleotides on the carbon turnover in the pancreas and liver of piglets weaned at 21 days of age. Four diets were evaluated: glutamine, glutamic acid or nucleotides-free diet (CD); containing 1% glutamine (GD); containing 1% glutamic acid (GAD) and containing 1% nucleotides (ND). One hundred and twenty-three piglets were utilized with three pigs slaughtered at day zero (weaning day) and three at each one of the experimental days (1, 2, 4, 5, 7, 9, 13, 20, 27, and 49 post-weaning), in order to collect organ samples, which were analyzed for the ${\delta}^{13}C$ isotopic composition and compared by means of time. No differences were found (p>0.05) among treatments for the turnover of the $^{13}C$ in the pancreas ($T_{50%}$ = 13.91, 14.37, 11.07, and 9.34 days; $T_{95%}$ = 46.22, 47.73, 36.79, and 31.04 days for CD, GD, GAD, and ND, respectively). In the liver, the ND presented accelerated values of carbon turnover ($T_{50%}=7.36$ and $T_{95%}=24.47days$) in relation to the values obtained for the GD ($T_{50%}=10.15$ and $T_{95%}=33.74days$). However, the values obtained for the CD ($T_{50%}=9.12$ and $T_{95%}=30.31days$) and GAD ($T_{50%}=7.83$ and $T_{95%}=26.03days$) had no differences (p>0.05) among other diets. The technique of $^{13}C$ isotopic dilution demonstrated trophic action of nucleotides in the liver.
Keywords
Liver; Pancreas; Pigs; Stable Isotopes;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Borges, M. C., M. M. Rogero, and J. Tirapegui. 2008. Enteral and parenteral supplementation with glutamine in preterm and low-birth-weight neonates. Rev. Bras. Cienc. Farm. 44:13-23.   DOI
2 Burrin, D. G. and B. Stoll. 2009. Metabolic fate and function of dietary glutamate in the gut. Am. J. Clin. Nutr. 90:850S-856S.   DOI
3 Caldara, F. R., C. Ducatti, D. A. Berto, J. C. Denadai, E. T. Silva, and R. G. Garcia. 2008. Effect of glutamine on carbon (${\delta}^{13}C$) turnover in the muscles and viscera of weaned piglets. Acta Sci. Anim. Sci. 30:291-297.
4 Carrijo, A. S, A. C. Pezzato, and C. Ducatti. 2000. Nutritional metabolism evaluation of laying hens using stable-carbon isotopes ($^{13}C/^{12}C$). Rev. Bras. Cienc. Avic. 2:209-218.   DOI
5 Carrijo, A. S., A. C. Pezzato, C. Ducatti, J. R. Sartori, L. Trinca, and E. T. Silva. 2006. Traceability of bovine meat and bone meal in poultry by stable isotope analysis. Rev. Bras. Cienc. Avic. 8:37-42.
6 Carver, J. D. 1994. Dietary nucleotides: Cellular immune, intestinal and hepatic system effects. J. Nutr. 124:144-148.   DOI
7 Carver, J. D. 1999. Dietary nucleotides: Effects on the immune and gastrointestinal systems. Acta Paediatr. Suppl. 430:83-88.
8 Denadai, J. C, C. Ducatti, A. C. Pezzato, A. S. Carrijo, F. R. Caldara, and R. P. Oliveira. 2006. Studies on carbon-13 turnover in eggs and blood of commercial layers. Rev. Bras. Cienc. Avic. 8:251-256.   DOI
9 Ducatti, C., A. S. Carrijo, A. C. Pezzato, and P. F. A. Mancera. 2002. Theorical and experimental model for carbon-13 turnover in mammalian and avian tissues. Sci. Agric. (Piracicaba, Braz.) 59:29-33.   DOI
10 Eggum, B. O. 1995. The influence of dietary fibre on protein digestion and utilization in monogastrics. Arch. Tierernahr. 48:89-95.   DOI
11 Frigerio, F., M. Casimir, S. Carobbio, and P. Maechler. 2008. Tissue specificity of mitochondrial glutamate pathways and the control of metabolic homeostasis. Biochim. Biophys. Acta 1777:965-972.   DOI
12 Fox, A. D., S. A. Kripke, J. M. Berman, R. M. McGintey, R. G. Settle, and J. L. Rombeau. 1988. Dexamethasone administration induces increased glutaminase specific activity in the jejunum and colon. J. Surg. Res. 44:391-396.   DOI
13 Grimble, G. K. 1994. Dietary nucleotides and gut mucosal defence. Gut 35:S46-S51.   DOI
14 Hobson, K. A. and R. G. Clark. 1992. Assessing avian diets using stable isotopes I: Turnover of $^{13}C$ in tissues. Condor 94:181-188.   DOI
15 Liu, Y., J. Han, J. Huang, X. Wang, F. Wang, and J. Wang. 2009. Dietary L-arginine supplementation improves intestinal function in weaned pigs after an Escherichia coli lipopolysaccharide challenge. Asian Australas. J. Anim. Sci. 22:1667-1675.   DOI
16 Meister, A. 1980. Catalytic mechanism of glutamine synthetase: Overview of glutamine metabolism. In: Glutamine: Metabolism, Enzymology, and Regulation (Ed J. Mora). Academic Press, New York, USA. pp. 1-40.
17 Mori C., E. A. Garcia, C. Ducatti, J. C. Denadai, R. Gottmann, and M. A. O. Mituo. 2008. Poultry offal meal traceability in meat quail tissues using the technique of stable carbon ($^{13}C/^{12}C$) and nitrogen ($^{15}N/^{14}N$) isotopes. Rev. Bras. Cienc. Avic. 10:45-52.   DOI
18 Ohyanagi, H., S. Nishmatsu, Y. Kanbara, M. Usami, and Y. Saitoh. 1989. Effects of nucleosides and a nucleotide on DNA and RNA syntheses by the salvage and de novo pathway in primary monolayer cultures of hepatocytes and hepatoma cells. J. Parenter. Enteral Nutr. 13:51-58.   DOI
19 Piasentier, E., R. Valusso, F. Camin, and G. Versini. 2003. Stable isotope ratio analysis for authentication of lamb meat. Meat Sci. 64:239-247.   DOI
20 Prohaszka, L. and F. Baron. 1980. The predisposing role of high dietary protein supplies in enteropathogenic E. coli infections of weaned pigs. Zentralbl. Veterinarmed. B. 27:222-232.
21 Rhoads, J. M. and G. Wu. 2009. Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111-122.   DOI
22 Rodwell, V. W. and P. J. Kennelly. 2003. Proteins: Determination of primary structure. In: Harper's Illustrated Biochemistry 26th edn. (Eds. R. K. Murray, D. K. Granner, P. A. Mayes, and V. W. Rodwell). McGraw-Hill Book Company, New York, NY, USA. pp. 21-29.
23 Rudolph, F. B. 1994. The biochemistry and physiology of nucleotides. J. Nutr. 124:124S-127S.   DOI
24 Rossi, P., E. G. Xavier, and F. Rutz. 2007. Nucleotides in animal nutrition. Rev. Bras. Agrociencia 13:5-12.
25 Rostagno, H. S., L. F. T. Albino, J. L. Donzele, P. C. Gomes, R. F. Oliveira, D. C. Lopes, A. S. Ferreira, S. L. T. Barreto, and R. F. Euclides. 2011. Brazilian tables for poultry and swine: composition of feedstuffs and nutritional requirements 3rd edn. UFV, Vicosa, MG, Brazil.
26 Van Buren, C. T. and F. Rudolph. 1997. Dietary nucleotides: A conditional requirement. Nutrition 13:470-472.   DOI
27 Van der Meulen, J., S. J. Koopmans, R. A. Dekker, and A. Hoogendoorn. 2010. Increasing weaning age of piglets from 4 to 7 weeks reduces stress, increases post-weaning feed intake but does not improve intestinal functionality. Animal 4:1653-1661.   DOI
28 Wu, G., F. W. Bazer, R. C. Burghardt, G. A. Johnson, S. W. Kim, X. L. Li, M. C. Satterfield, and T. E. Spencer. 2010. Impacts of amino acid nutrition on pregnancy outcome in pigs: mechanisms and implications for swine production. J. Anim. Sci. 88:E195-E204.   DOI
29 Sauer N., M. Eklund, E. Bauer, M. G. Ganzle, C. J. Field, R. T. Zijlstra, and R. Mosenthin. 2012. The effects of pure nucleotides on performance, humoral immunity, gut structure and numbers of intestinal bacteria of newly weaned pigs. J. Anim. Sci. 90:3126-3134.   DOI
30 Wu, G., S. A. Meier, and D. A. Knabe. 1996. Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J. Nutr. 126:2578-2584.   DOI
31 Zuanon, J. A. S., A. C. Pezzato, C. Ducatti, M. M. Barros, L. E. Pezzato, and J. R. S. Passos. 2007. Muscle ${\delta}^{13}C$ change in Nile Tilapia (Oreochromis niloticus) fingerlings fed on C3- or C4-cycle plants grain-based diets. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 147:761-765.   DOI